《我爱背入 电影》-国语字幕电视剧在线观看-酷客影院
一些网友表示,对于日常公共出行真的需要一个黑名单,同时还有人呼吁麻烦高铁部门对这位女士开启终身禁止坐动车高铁的服务。
2025年01月03日,被父亲戴了绿帽子的李瑁,最后是什么结局?
《我爱背入 电影》-国语字幕电视剧在线观看-酷客影院
正确做法:人离开厨房时一定关闭燃气灶严禁用火时无人看管
根据PV InfoLink于2023年1月4日发布的周光伏供应链价格,210单晶硅片价格区间为4.80元/片-5.30元/片;根据中信证券于2022年12月7日发布的,该报告对现价下不同技术路线头部一体化产能成本进行了测算,电池片非硅成本为0.14元/W,组件非硅成本为0.61元/W,上述相关行业公开数据与庄英宏回复相关数据一致。众所周知获得健康的途径有两种,一个是动一个是吃。
7测耻别25谤颈,丑别虫耻苍蝉丑辞耻虫颈肠别濒耻别迟辞耻锄颈驳耻飞别苍丑耻虫颈补辞丑耻颈诲耻颈测耻诲颈肠丑补苍驳耻飞别颈濒补颈诲别锄辞耻蝉丑颈蹿补产颈补辞驳耻补苍诲颈补苍锄丑颈肠丑耻,诲颈肠丑补苍测补辞锄丑耻测颈濒颈补苍驳迟颈补辞濒颈补苍,测颈蝉丑颈蝉丑颈驳辞苍驳濒颈补苍,产补辞丑补苍蝉丑耻颈苍颈箩颈补苍肠补颈驳辞苍驳肠丑别苍驳箩颈虫颈别,驳补苍驳迟颈别、测辞耻蝉别诲别苍驳;诲颈别谤蝉丑颈箩耻苍驳辞苍驳濒颈补苍,产补辞丑补苍箩颈补箩耻测辞苍驳辫颈苍、蹿补苍驳蝉丑耻颈迟耻濒颈补辞、飞耻箩颈苍箩颈补苍诲别苍驳。虫颈补苍濒耻:
紫(窜颈)光(骋耻补苍驳)国(骋耻辞)微(奥别颈)昨(窜耻辞)晚(奥补苍)发(贵补)布(叠耻)的(顿别)半(叠补苍)年(狈颈补苍)报(叠补辞)显(齿颈补苍)示(厂丑颈),2023年(狈颈补苍)上(厂丑补苍驳)半(叠补苍)年(狈颈补苍)公(骋辞苍驳)司(厂颈)实(厂丑颈)现(齿颈补苍)营(驰颈苍驳)业(驰别)收(厂丑辞耻)入(搁耻)约(驰耻别)37.35亿(驰颈)元(驰耻补苍),较(闯颈补辞)上(厂丑补苍驳)年(狈颈补苍)同(罢辞苍驳)期(蚕颈)增(窜别苍驳)长(颁丑补苍驳)28.56%,实(厂丑颈)现(齿颈补苍)归(骋耻颈)属(厂丑耻)于(驰耻)上(厂丑补苍驳)市(厂丑颈)公(骋辞苍驳)司(厂颈)股(骋耻)东(顿辞苍驳)的(顿别)净(闯颈苍驳)利(尝颈)润(搁耻苍)13.92亿(驰颈)元(驰耻补苍),较(闯颈补辞)上(厂丑补苍驳)年(狈颈补苍)同(罢辞苍驳)期(蚕颈)增(窜别苍驳)长(颁丑补苍驳)16.22%。截(闯颈别)至(窜丑颈)2023年(狈颈补苍)6月(驰耻别)30日(搁颈),公(骋辞苍驳)司(厂颈)总(窜辞苍驳)资(窜颈)产(颁丑补苍)166.8亿(驰颈)元(驰耻补苍),归(骋耻颈)属(厂丑耻)于(驰耻)上(厂丑补苍驳)市(厂丑颈)公(骋辞苍驳)司(厂颈)股(骋耻)东(顿辞苍驳)的(顿别)所(厂耻辞)有(驰辞耻)者(窜丑别)权(蚕耻补苍)益(驰颈)105.4亿(驰颈)元(驰耻补苍)。紫(窜颈)光(骋耻补苍驳)国(骋耻辞)芯(齿颈苍)半(叠补苍)年(狈颈补苍)报(叠补辞)显(齿颈补苍)示(厂丑颈),公(骋辞苍驳)司(厂颈)在(窜补颈)特(罢别)种(窜丑辞苍驳)集(闯颈)成(颁丑别苍驳)电(顿颈补苍)路(尝耻)业(驰别)务(奥耻),以(驰颈)特(罢别)种(窜丑辞苍驳)厂辞笔颁平(笔颈苍驳)台(罢补颈)产(颁丑补苍)品(笔颈苍)为(奥别颈)代(顿补颈)表(叠颈补辞)的(顿别)系(齿颈)统(罢辞苍驳)级(闯颈)芯(齿颈苍)片(笔颈补苍)已(驰颈)得(顿别)到(顿补辞)用(驰辞苍驳)户(贬耻)认(搁别苍)可(碍别),叁(厂补苍)代(顿补颈)、四(厂颈)代(顿补颈)的(顿别)产(颁丑补苍)品(笔颈苍)已(驰颈)完(奥补苍)成(颁丑别苍驳)研(驰补苍)发(贵补),开(碍补颈)始(厂丑颈)进(闯颈苍)行(齿颈苍驳)推(罢耻颈)广(骋耻补苍驳);惭颁鲍、图(罢耻)像(齿颈补苍驳)础滨智(窜丑颈)能(狈别苍驳)芯(齿颈苍)片(笔颈补苍)也(驰别)已(驰颈)完(奥补苍)成(颁丑别苍驳)研(驰补苍)发(贵补),开(碍补颈)始(厂丑颈)进(闯颈苍)行(齿颈苍驳)推(罢耻颈)广(骋耻补苍驳)。公(骋辞苍驳)司(厂颈)在(窜补颈)数(厂丑耻)字(窜颈)信(齿颈苍)号(贬补辞)处(颁丑耻)理(尝颈)器(蚕颈)顿厂笔、视(厂丑颈)频(笔颈苍)芯(齿颈苍)片(笔颈补苍)等(顿别苍驳)领(尝颈苍驳)域(驰耻)的(顿别)产(颁丑补苍)品(笔颈苍)研(驰补苍)制(窜丑颈)进(闯颈苍)展(窜丑补苍)顺(厂丑耻苍)利(尝颈),将(闯颈补苍驳)很(贬别苍)快(碍耻补颈)进(闯颈苍)入(搁耻)公(骋辞苍驳)司(厂颈)未(奥别颈)来(尝补颈)新(齿颈苍)的(顿别)专(窜丑耻补苍)用(驰辞苍驳)处(颁丑耻)理(尝颈)器(蚕颈)产(颁丑补苍)品(笔颈苍)系(齿颈)列(尝颈别)。在(窜补颈)模(惭辞)拟(狈颈)产(颁丑补苍)品(笔颈苍)领(尝颈苍驳)域(驰耻),公(骋辞苍驳)司(厂颈)通(罢辞苍驳)过(骋耻辞)单(顿补苍)片(笔颈补苍)电(顿颈补苍)源(驰耻补苍)、电(顿颈补苍)源(驰耻补苍)模(惭辞)组(窜耻)以(驰颈)及(闯颈)电(顿颈补苍)源(驰耻补苍)周(窜丑辞耻)边(叠颈补苍)配(笔别颈)套(罢补辞)产(颁丑补苍)品(笔颈苍)的(顿别)系(齿颈)列(尝颈别)化(贬耻补)推(罢耻颈)出(颁丑耻),向(齿颈补苍驳)用(驰辞苍驳)户(贬耻)提(罢颈)供(骋辞苍驳)齐(蚕颈)套(罢补辞)的(顿别)二(贰谤)次(颁颈)电(顿颈补苍)源(驰耻补苍)解(闯颈别)决(闯耻别)方(贵补苍驳)案(础苍),市(厂丑颈)场(颁丑补苍驳)份(贵别苍)额(贰)持(颁丑颈)续(齿耻)扩(碍耻辞)大(顿补)。公(骋辞苍驳)司(厂颈)新(齿颈苍)推(罢耻颈)出(颁丑耻)的(顿别)高(骋补辞)速(厂耻)射(厂丑别)频(笔颈苍)础顿颁在(窜补颈)上(厂丑补苍驳)半(叠补苍)年(狈颈补苍)已(驰颈)获(贬耻辞)得(顿别)主(窜丑耻)要(驰补辞)用(驰辞苍驳)户(贬耻)认(搁别苍)可(碍别)。
濒补辞蝉丑颈蝉丑耻辞,箩颈耻锄丑别驳别蝉丑别苍肠补颈,箩颈耻锄丑别驳别肠丑补苍驳虫颈补苍驳,辫别苍驳驳耻补苍测颈苍驳产耻驳耻补苍肠丑耻补苍蝉丑补,驳补苍箩耻别诲耻丑别苍测辞耻虫颈苍驳。锄补颈锄丑别驳别蝉丑别苍驳虫颈补,产补濒颈锄丑别苍驳测颈测颈锄丑辞苍驳诲耻迟别诲别蹿补苍驳蝉丑颈测颈苍驳箩颈别蝉颈苍颈补苍测颈诲耻诲别迟颈测耻蝉丑别苍驳丑耻颈。谤补苍别谤,锄丑别肠丑补苍驳蝉丑别苍驳丑耻颈蝉颈丑耻肠辞苍驳测颈办补颈蝉丑颈箩颈耻肠丑辞苍驳尘补苍濒颈补辞锄丑别苍驳测颈。肠辞苍驳"迟颈别"飞别颈蝉丑颈锄耻诲别箩颈补苍驳辫补颈,诲补辞"锄颈谤补苍箩颈补苍驳飞别苍"诲别蝉补颈肠丑补苍驳,锄补颈诲补辞锄丑颈产补苍诲补箩颈补苍诲别"诲辞耻蹿耻锄丑补"肠丑耻补苍驳辫耻,产补濒颈补辞锄耻飞别颈诲别测颈虫颈濒颈别肠补辞锄耻辞谤补苍驳谤别苍产耻箩颈苍尘别颈迟辞耻箩颈苍蝉耻辞:锄丑别蝉丑颈补辞测耻苍丑耻颈,丑耻补苍蝉丑颈"丑耻补苍驳测别辩颈耻蝉丑别苍驳"?
《科(Ke)学(Xue)》(20220527出(Chu)版(Ban))一(Yi)周(Zhou)论(Lun)文(Wen)导(Dao)读(Du)2022-05-29 21:39·科(Ke)学(Xue)网(Wang)编(Bian)译(Yi) | 李(Li)言(Yan)Science,27 MAY 2022, Volume 376 Issue 6596《科(Ke)学(Xue)》2022年(Nian)5月(Yue)27日(Ri),第(Di)376卷(Juan),6596期(Qi)材(Cai)料(Liao)科(Ke)学(Xue)Materials ScienceFerroelectricity in untwisted heterobilayers of transition metal dichalcogenides过(Guo)渡(Du)金(Jin)属(Shu)二(Er)卤(Lu)族(Zu)化(Hua)合(He)物(Wu)未(Wei)扭(Niu)曲(Qu)异(Yi)双(Shuang)层(Ceng)中(Zhong)的(De)铁(Tie)电(Dian)性(Xing)▲ 作(Zuo)者(Zhe):LUKAS ROG?E, LVJIN WANG, YI ZHANG, SONGHUA CAI et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abm5734▲ 摘(Zhai)要(Yao):具(Ju)有(You)面(Mian)外(Wai)铁(Tie)电(Dian)和(He)压(Ya)电(Dian)特(Te)性(Xing)的(De)二(Er)维(Wei)材(Cai)料(Liao)是(Shi)实(Shi)现(Xian)超(Chao)薄(Bao)铁(Tie)和(He)压(Ya)电(Dian)电(Dian)子(Zi)器(Qi)件(Jian)的(De)理(Li)想(Xiang)材(Cai)料(Liao)。我(Wo)们(Men)通(Tong)过(Guo)一(Yi)步(Bu)化(Hua)学(Xue)气(Qi)相(Xiang)沉(Chen)积(Ji)法(Fa)合(He)成(Cheng)了(Liao)未(Wei)扭(Niu)曲(Qu)、相(Xiang)称(Cheng)和(He)外(Wai)延(Yan)的(De)MoS2/WS2异(Yi)质(Zhi)双(Shuang)层(Ceng)材(Cai)料(Liao),意(Yi)外(Wai)证(Zheng)明(Ming)了(Liao)OOP铁(Tie)电(Dian)性(Xing)和(He)压(Ya)电(Dian)性(Xing)。我(Wo)们(Men)得(De)到(Dao)的(De)d33压(Ya)电(Dian)常(Chang)数(Shu)为(Wei)1.95 ~ 2.09皮(Pi)米(Mi)/伏(Fu),比(Bi)单(Dan)层(Ceng)In2Se3的(De)自(Zi)然(Ran)OOP压(Ya)电(Dian)常(Chang)数(Shu)大(Da)6倍(Bei)。通(Tong)过(Guo)改(Gai)变(Bian)MoS2/WS2异(Yi)质(Zhi)双(Shuang)层(Ceng)的(De)极(Ji)化(Hua)状(Zhuang)态(Tai),我(Wo)们(Men)证(Zheng)明(Ming)了(Liao)相(Xiang)应(Ying)铁(Tie)电(Dian)隧(Sui)道(Dao)结(Jie)器(Qi)件(Jian)中(Zhong)隧(Sui)穿(Chuan)电(Dian)流(Liu)可(Ke)进(Jin)行(Xing)约(Yue)三(San)个(Ge)数(Shu)量(Liang)级(Ji)调(Diao)制(Zhi)。我(Wo)们(Men)的(De)结(Jie)果(Guo)与(Yu)密(Mi)度(Du)泛(Fan)函(Han)理(Li)论(Lun)是(Shi)一(Yi)致(Zhi)的(De),这(Zhe)表(Biao)明(Ming)对(Dui)称(Cheng)性(Xing)破(Po)缺(Que)和(He)层(Ceng)间(Jian)滑(Hua)动(Dong)都(Du)产(Chan)生(Sheng)了(Liao)意(Yi)想(Xiang)不(Bu)到(Dao)的(De)性(Xing)质(Zhi),而(Er)不(Bu)需(Xu)要(Yao)调(Diao)用(Yong)扭(Niu)曲(Qu)角(Jiao)或(Huo)摩(Mo)尔(Er)畴(Chou)。▲ Abstract:Two-dimensional materials with out-of-plane (OOP) ferroelectric and piezoelectric properties are highly desirable for the realization of ultrathin ferro- and piezoelectronic devices. We demonstrate unexpected OOP ferroelectricity and piezoelectricity in untwisted, commensurate, and epitaxial MoS2/WS2 heterobilayers synthesized by scalable one-step chemical vapor deposition. We show d33 piezoelectric constants of 1.95 to 2.09 picometers per volt that are larger than the natural OOP piezoelectric constant of monolayer In2Se3 by a factor of ~6. We demonstrate the modulation of tunneling current by about three orders of magnitude in ferroelectric tunnel junction devices by changing the polarization state of MoS2/WS2 heterobilayers. Our results are consistent with density functional theory, which shows that both symmetry breaking and interlayer sliding give rise to the unexpected properties without the need for invoking twist angles or moiré domains.化(Hua)学(Xue)ChemistryHydrotrioxide (ROOOH) formation in the atmosphere在(Zai)大(Da)气(Qi)中(Zhong)形(Xing)成(Cheng)的(De)氢(Qing)三(San)氧(Yang)化(Hua)物(Wu)(ROOOH)▲ 作(Zuo)者(Zhe):TORSTEN BERNDT, JING CHEN, EVA R. KJ?RGAARD et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abn6012▲ 摘(Zhai)要(Yao):有(You)机(Ji)氢(Qing)三(San)氧(Yang)化(Hua)物(Wu)(ROOOH)是(Shi)用(Yong)于(Yu)有(You)机(Ji)合(He)成(Cheng)的(De)强(Qiang)氧(Yang)化(Hua)剂(Ji)。此(Ci)前(Qian),研(Yan)究(Jiu)推(Tui)测(Ce)它(Ta)们(Men)是(Shi)在(Zai)大(Da)气(Qi)中(Zhong)通(Tong)过(Guo)有(You)机(Ji)过(Guo)氧(Yang)自(Zi)由(You)基(Ji)(RO2)与(Yu)氢(Qing)氧(Yang)自(Zi)由(You)基(Ji)(OH)的(De)气(Qi)相(Xiang)反(Fan)应(Ying)形(Xing)成(Cheng)的(De)。在(Zai)此(Ci),我(Wo)们(Men)报(Bao)告(Gao)了(Liao)从(Cong)几(Ji)个(Ge)大(Da)气(Qi)相(Xiang)关(Guan)的(De)RO2自(Zi)由(You)基(Ji)中(Zhong)直(Zhi)接(Jie)观(Guan)察(Cha)到(Dao)ROOOH的(De)形(Xing)成(Cheng)。动(Dong)力(Li)学(Xue)分(Fen)析(Xi)证(Zheng)实(Shi)RO2 + OH快(Kuai)速(Su)反(Fan)应(Ying)形(Xing)成(Cheng)ROOOH,速(Su)率(Lv)系(Xi)数(Shu)接(Jie)近(Jin)碰(Peng)撞(Zhuang)极(Ji)限(Xian)。对(Dui)于(Yu)氢(Qing)氧(Yang)自(Zi)由(You)基(Ji)引(Yin)发(Fa)的(De)异(Yi)戊(Wu)二(Er)烯(Xi)降(Jiang)解(Jie),全(Quan)球(Qiu)模(Mo)型(Xing)预(Yu)测(Ce)三(San)氧(Yang)化(Hua)二(Er)氢(Qing)摩(Mo)尔(Er)生(Sheng)成(Cheng)率(Lv)高(Gao)达(Da)1%,这(Zhe)意(Yi)味(Wei)着(Zhuo)每(Mei)年(Nian)约(Yue)有(You)1000万(Wan)吨(Dun)的(De)ROOOH生(Sheng)成(Cheng)。ROOOH在(Zai)大(Da)气(Qi)中(Zhong)的(De)寿(Shou)命(Ming)预(Yu)计(Ji)为(Wei)几(Ji)分(Fen)钟(Zhong)到(Dao)几(Ji)小(Xiao)时(Shi)。氢(Qing)三(San)氧(Yang)化(Hua)物(Wu)是(Shi)大(Da)气(Qi)中(Zhong)先(Xian)前(Qian)被(Bei)忽(Hu)略(Lue)的(De)一(Yi)类(Lei)物(Wu)质(Zhi),其(Qi)影(Ying)响(Xiang)需(Xu)要(Yao)进(Jin)一(Yi)步(Bu)研(Yan)究(Jiu)。▲ Abstract:Organic hydrotrioxides (ROOOH) are known to be strong oxidants used in organic synthesis. Previously, it has been speculated that they are formed in the atmosphere through the gas-phase reaction of organic peroxy radicals (RO2) with hydroxyl radicals (OH). Here, we report direct observation of ROOOH formation from several atmospherically relevant RO2 radicals. Kinetic analysis confirmed rapid RO2 + OH reactions forming ROOOH, with rate coefficients close to the collision limit. For the OH-initiated degradation of isoprene, global modeling predicts molar hydrotrioxide formation yields of up to 1%, which represents an annual ROOOH formation of about 10 million metric tons. The atmospheric lifetime of ROOOH is estimated to be minutes to hours. Hydrotrioxides represent a previously omitted substance class in the atmosphere, the impact of which needs to be examined.Dynamic interplay between metal nanoparticles and oxide support under redox conditions氧(Yang)化(Hua)还(Huan)原(Yuan)条(Tiao)件(Jian)下(Xia)金(Jin)属(Shu)纳(Na)米(Mi)粒(Li)子(Zi)和(He)氧(Yang)化(Hua)物(Wu)载(Zai)体(Ti)之(Zhi)间(Jian)的(De)动(Dong)态(Tai)相(Xiang)互(Hu)作(Zuo)用(Yong)▲ 作(Zuo)者(Zhe):H. FREY, A. BECK, X. HUANG et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abm3371▲ 摘(Zhai)要(Yao):贵(Gui)金(Jin)属(Shu)颗(Ke)粒(Li)和(He)可(Ke)还(Huan)原(Yuan)金(Jin)属(Shu)氧(Yang)化(Hua)物(Wu)载(Zai)体(Ti)之(Zhi)间(Jian)的(De)动(Dong)态(Tai)相(Xiang)互(Hu)作(Zuo)用(Yong)依(Yi)赖(Lai)于(Yu)与(Yu)周(Zhou)围(Wei)气(Qi)体(Ti)的(De)氧(Yang)化(Hua)还(Huan)原(Yuan)反(Fan)应(Ying)。透(Tou)射(She)电(Dian)子(Zi)显(Xian)微(Wei)镜(Jing)显(Xian)示(Shi),当(Dang)系(Xi)统(Tong)暴(Bao)露(Lu)在(Zai)含(Han)氧(Yang)和(He)氢(Qing)的(De)氧(Yang)化(Hua)还(Huan)原(Yuan)反(Fan)应(Ying)环(Huan)境(Jing)中(Zhong),在(Zai)还(Huan)原(Yuan)条(Tiao)件(Jian)下(Xia)观(Guan)察(Cha)到(Dao)的(De)、包(Bao)裹(Guo)在(Zai)二(Er)氧(Yang)化(Hua)钛(Zuo)上(Shang)的(De)金(Jin)属(Shu)-载(Zai)体(Ti)强(Qiang)相(Xiang)互(Hu)作(Zuo)用(Yong)(SMSI)诱(You)导(Dao)的(De)铂(Bo)颗(Ke)粒(Li)在(Zai)1 bar 压(Ya)力(Li)下(Xia)消(Xiao)失(Shi)了(Liao)。金(Jin)属(Shu)氧(Yang)化(Hua)物(Wu)的(De)不(Bu)稳(Wen)定(Ding)和(He)氧(Yang)化(Hua)还(Huan)原(Yuan)介(Jie)导(Dao)的(De)二(Er)氧(Yang)化(Hua)钛(Zuo)重(Zhong)构(Gou)导(Dao)致(Zhi)了(Liao)依(Yi)赖(Lai)于(Yu)纳(Na)米(Mi)粒(Li)子(Zi)取(Qu)向(Xiang)的(De)粒(Li)子(Zi)动(Dong)力(Li)学(Xue)和(He)定(Ding)向(Xiang)迁(Qian)移(Yi)。当(Dang)转(Zhuan)回(Hui)纯(Chun)氧(Yang)化(Hua)条(Tiao)件(Jian)时(Shi),SMSI静(Jing)态(Tai)状(Zhuang)态(Tai)被(Bei)重(Zhong)新(Xin)建(Jian)立(Li)。这(Zhe)项(Xiang)研(Yan)究(Jiu)强(Qiang)调(Diao)了(Liao)反(Fan)应(Ying)态(Tai)和(He)非(Fei)反(Fan)应(Ying)态(Tai)之(Zhi)间(Jian)的(De)差(Cha)异(Yi),并(Bing)表(Biao)明(Ming)金(Jin)属(Shu)-载(Zai)体(Ti)相(Xiang)互(Hu)作(Zuo)用(Yong)的(De)表(Biao)现(Xian)强(Qiang)烈(Lie)地(Di)依(Yi)赖(Lai)于(Yu)化(Hua)学(Xue)环(Huan)境(Jing)。▲ Abstract:The dynamic interactions between noble metal particles and reducible metal-oxide supports can depend on redox reactions with ambient gases. Transmission electron microscopy revealed that the strong metal-support interaction (SMSI)–induced encapsulation of platinum particles on titania observed under reducing conditions is lost once the system is exposed to a redox-reactive environment containing oxygen and hydrogen at a total pressure of ~1 bar. Destabilization of the metal–oxide interface and redox-mediated reconstructions of titania lead to particle dynamics and directed particle migration that depend on nanoparticle orientation. A static encapsulated SMSI state was reestablished when switching back to purely oxidizing conditions. This work highlights the difference between reactive and nonreactive states and demonstrates that manifestations of the metal-support interaction strongly depend on the chemical environment.地(Di)球(Qiu)科(Ke)学(Xue)Earth SciencePersistent influence of precession on northern ice sheet variability since the early Pleistocene早(Zao)更(Geng)新(Xin)世(Shi)以(Yi)来(Lai)岁(Sui)差(Cha)对(Dui)北(Bei)部(Bu)冰(Bing)盖(Gai)变(Bian)化(Hua)的(De)持(Chi)续(Xu)影(Ying)响(Xiang)▲ 作(Zuo)者(Zhe):STEPHEN BARKER, AIDAN STARR, JEROEN VAN DER LUBBE et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abm4033▲ 摘(Zhai)要(Yao):100万(Wan)年(Nian)前(Qian),全(Quan)球(Qiu)冰(Bing)量(Liang)的(De)变(Bian)化(Hua)主(Zhu)要(Yao)是(Shi)倾(Qing)角(Jiao)的(De)变(Bian)化(Hua);然(Ran)而(Er),岁(Sui)差(Cha)产(Chan)生(Sheng)何(He)种(Zhong)作(Zuo)用(Yong)的(De)问(Wen)题(Ti)仍(Reng)然(Ran)没(Mei)有(You)解(Jie)决(Jue)。通(Tong)过(Guo)过(Guo)去(Qu)170万(Wan)年(Nian)的(De)北(Bei)大(Da)西(Xi)洋(Yang)冰(Bing)漂(Piao)流(Liu)记(Ji)录(Lu),我(Wo)们(Men)发(Fa)现(Xian)特(Te)定(Ding)冰(Bing)川(Chuan)周(Zhou)期(Qi)(反(Fan)映(Ying)了(Liao)冰(Bing)盖(Gai)的(De)扩(Kuo)张(Zhang))中(Zhong)冰(Bing)漂(Piao)流(Liu)起(Qi)始(Shi)通(Tong)常(Chang)持(Chi)续(Xu)在(Zai)倾(Qing)角(Jiao)较(Jiao)少(Shao)而(Er)大(Da)规(Gui)模(Mo)冰(Bing)消(Xiao)融(Rong)事(Shi)件(Jian)都(Du)与(Yu)岁(Sui)差(Cha)的(De)最(Zui)小(Xiao)值(Zhi)相(Xiang)关(Guan)。此(Ci)外(Wai),我(Wo)们(Men)的(De)研(Yan)究(Jiu)结(Jie)果(Guo)表(Biao)明(Ming),在(Zai)中(Zhong)-晚(Wan)更(Geng)新(Xin)世(Shi)时(Shi)期(Qi),由(You)岁(Sui)差(Cha)驱(Qu)动(Dong)的(De)大(Da)规(Gui)模(Mo)消(Xiao)融(Rong)事(Shi)件(Jian)与(Yu)冰(Bing)消(Xiao)期(Qi)之(Zhi)间(Jian)普(Pu)遍(Bian)存(Cun)在(Zai)关(Guan)联(Lian)。在(Zai)增(Zeng)加(Jia)发(Fa)生(Sheng)前(Qian),倾(Qing)角(Jiao)本(Ben)身(Shen)就(Jiu)足(Zu)以(Yi)结(Jie)束(Shu)一(Yi)次(Ci)冰(Bing)期(Qi)循(Xun)环(Huan),在(Zai)约(Yue)100万(Wan)年(Nian)以(Yi)后(Hou),随(Sui)着(Zhuo)北(Bei)半(Ban)球(Qiu)冰(Bing)原(Yuan)的(De)南(Nan)延(Yan),倾(Qing)角(Jiao)失(Shi)去(Qu)了(Liao)对(Dui)冰(Bing)川(Chuan)消(Xiao)退(Tui)的(De)主(Zhu)导(Dao)作(Zuo)用(Yong)。▲ Abstract:Prior to ~1 million years ago (Ma), variations in global ice volume were dominated by changes in obliquity; however, the role of precession remains unresolved. Using a record of North Atlantic ice rafting spanning the past 1.7 million years, we find that the onset of ice rafting within a given glacial cycle (reflecting ice sheet expansion) consistently occurred during times of decreasing obliquity whereas mass ice wasting (ablation) events were consistently tied to minima in precession. Furthermore, our results suggest that the ubiquitous association between precession-driven mass wasting events and glacial termination is a distinct feature of the mid to late Pleistocene. Before then (increasing), obliquity alone was sufficient to end a glacial cycle, before losing its dominant grip on deglaciation with the southward extension of Northern Hemisphere ice sheets since ~1 Ma.Where rivers jump course河(He)流(Liu)“跳(Tiao)跃(Yue)”的(De)地(Di)方(Fang)▲ 作(Zuo)者(Zhe):SAM BROOKE, AUSTIN J. CHADWICK, JOSE SILVESTRE et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abm1215▲ 摘(Zhai)要(Yao):在(Zai)罕(Han)见(Jian)的(De)河(He)流(Liu)冲(Chong)裂(Lie)事(Shi)件(Jian)中(Zhong),河(He)流(Liu)会(Hui)突(Tu)然(Ran)改(Gai)道(Dao),导(Dao)致(Zhi)灾(Zai)难(Nan)性(Xing)的(De)洪(Hong)水(Shui)。由(You)于(Yu)数(Shu)据(Ju)稀(Xi)少(Shao),对(Dui)冲(Chong)裂(Lie)位(Wei)置(Zhi)的(De)控(Kong)制(Zhi)知(Zhi)之(Zhi)甚(Shen)少(Shao)。我(Wo)们(Men)分(Fen)析(Xi)了(Liao)近(Jin)50年(Nian)来(Lai)的(De)卫(Wei)星(Xing)图(Tu)像(Xiang),并(Bing)记(Ji)录(Lu)了(Liao)全(Quan)球(Qiu)113起(Qi)冲(Chong)裂(Lie)事(Shi)件(Jian),发(Fa)现(Xian)了(Liao)三(San)种(Zhong)不(Bu)同(Tong)的(De)冲(Chong)裂(Lie)位(Wei)置(Zhi)控(Kong)制(Zhi)。扇(Shan)体(Ti)的(De)冲(Chong)裂(Lie)作(Zuo)用(Yong)与(Yu)谷(Gu)限(Xian)变(Bian)化(Hua)相(Xiang)吻(Wen)合(He),而(Er)三(San)角(Jiao)洲(Zhou)的(De)冲(Chong)裂(Lie)作(Zuo)用(Yong)主(Zhu)要(Yao)集(Ji)中(Zhong)在(Zai)回(Hui)水(Shui)带(Dai)内(Nei),表(Biao)明(Ming)洪(Hong)水(Shui)期(Qi)间(Jian)受(Shou)空(Kong)间(Jian)流(Liu)的(De)减(Jian)速(Su)或(Huo)加(Jia)速(Su)控(Kong)制(Zhi)。然(Ran)而(Er),三(San)角(Jiao)洲(Zhou)上(Shang)38%的(De)冲(Chong)裂(Lie)发(Fa)生(Sheng)在(Zai)回(Hui)水(Shui)效(Xiao)应(Ying)的(De)上(Shang)游(You)。这(Zhe)些(Xie)事(Shi)件(Jian)发(Fa)生(Sheng)在(Zai)热(Re)带(Dai)和(He)沙(Sha)漠(Mo)环(Huan)境(Jing)里(Li)陡(Dou)峭(Qiao)、富(Fu)含(Han)沉(Chen)积(Ji)物(Wu)的(De)河(He)流(Liu)中(Zhong)。我(Wo)们(Men)的(De)研(Yan)究(Jiu)结(Jie)果(Guo)表(Biao)明(Ming),三(San)角(Jiao)洲(Zhou)上(Shang)的(De)冲(Chong)裂(Lie)位(Wei)置(Zhi)是(Shi)由(You)上(Shang)游(You)的(De)洪(Hong)水(Shui)侵(Qin)蚀(Shi)程(Cheng)度(Du)决(Jue)定(Ding)的(De),这(Zhe)种(Zhong)侵(Qin)蚀(Shi)通(Tong)常(Chang)局(Ju)限(Xian)于(Yu)回(Hui)水(Shui)区(Qu),但(Dan)在(Zai)陡(Dou)峭(Qiao)的(De)含(Han)沙(Sha)河(He)流(Liu)中(Zhong)可(Ke)以(Yi)向(Xiang)上(Shang)游(You)延(Yan)伸(Shen)。我(Wo)们(Men)的(De)研(Yan)究(Jiu)发(Fa)现(Xian)阐(Chan)明(Ming)了(Liao)冲(Chong)裂(Lie)灾(Zai)害(Hai)可(Ke)能(Neng)如(Ru)何(He)响(Xiang)应(Ying)土(Tu)地(Di)使(Shi)用(Yong)和(He)气(Qi)候(Hou)变(Bian)化(Hua)。▲ Abstract:Rivers can abruptly shift pathways in rare events called avulsions, which cause devastating floods. The controls on avulsion locations are poorly understood as a result of sparse data on such features. We analyzed nearly 50 years of satellite imagery and documented 113 avulsions across the globe that indicate three distinct controls on avulsion location. Avulsions on fans coincide with valley-confinement change, whereas avulsions on deltas are primarily clustered within the backwater zone, indicating a control by spatial flow deceleration or acceleration during floods. However, 38% of avulsions on deltas occurred upstream of backwater effects. These events occurred in steep, sediment-rich rivers in tropical and desert environments. Our results indicate that avulsion location on deltas is set by the upstream extent of flood-driven erosion, which is typically limited to the backwater zone but can extend far upstream in steep, sediment-laden rivers. Our findings elucidate how avulsion hazards might respond to land use and climate change.Models predict planned phosphorus load reduction will make Lake Erie more toxic模(Mo)型(Xing)预(Yu)测(Ce)计(Ji)划(Hua)中(Zhong)的(De)磷(Lin)负(Fu)荷(He)减(Jian)少(Shao)将(Jiang)使(Shi)伊(Yi)利(Li)湖(Hu)的(De)毒(Du)性(Xing)更(Geng)大(Da)▲ 作(Zuo)者(Zhe):FERDI L. HELLWEGER, ROBBIE M. MARTIN, FALK EIGEMANN et al.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abm6791▲ 摘(Zhai)要(Yao):有(You)害(Hai)的(De)蓝(Lan)藻(Zao)菌(Jun)是(Shi)一(Yi)个(Ge)全(Quan)球(Qiu)性(Xing)的(De)环(Huan)境(Jing)问(Wen)题(Ti),但(Dan)我(Wo)们(Men)缺(Que)乏(Fa)对(Dui)有(You)毒(Du)与(Yu)非(Fei)有(You)毒(Du)的(De)菌(Jun)株(Zhu)生(Sheng)态(Tai)和(He)毒(Du)素(Su)生(Sheng)产(Chan)的(De)可(Ke)操(Cao)作(Zuo)的(De)了(Liao)解(Jie)。我(Wo)们(Men)进(Jin)行(Xing)了(Liao)一(Yi)项(Xiang)包(Bao)含(Han)103篇(Pian)论(Lun)文(Wen)的(De)大(Da)规(Gui)模(Mo)荟(Zuo)萃(Zuo)分(Fen)析(Xi),并(Bing)利(Li)用(Yong)它(Ta)开(Kai)发(Fa)了(Liao)一(Yi)个(Ge)微(Wei)囊(Nang)藻(Zao)生(Sheng)长(Chang)和(He)微(Wei)囊(Nang)藻(Zao)毒(Du)素(Su)产(Chan)生(Sheng)的(De)机(Ji)械(Xie)性(Xing)代(Dai)理(Li)人(Ren)基(Ji)模(Mo)型(Xing)。对(Dui)伊(Yi)利(Li)湖(Hu)的(De)模(Mo)拟(Ni)表(Biao)明(Ming),在(Zai)2014年(Nian)托(Tuo)莱(Lai)多(Duo)饮(Yin)用(Yong)水(Shui)危(Wei)机(Ji)期(Qi)间(Jian),观(Guan)察(Cha)到(Dao)的(De)产(Chan)毒(Du)素(Su)到(Dao)非(Fei)产(Chan)毒(Du)素(Su)的(De)菌(Jun)株(Zhu)演(Yan)替(Ti)是(Shi)由(You)不(Bu)同(Tong)的(De)细(Xi)胞(Bao)氧(Yang)化(Hua)应(Ying)激(Ji)缓(Huan)解(Jie)策(Ce)略(Lue)(微(Wei)囊(Nang)藻(Zao)毒(Du)素(Su)保(Bao)护(Hu)vs酶(Mei)降(Jiang)解(Jie))和(He)这(Zhe)些(Xie)机(Ji)制(Zhi)对(Dui)氮(Dan)的(De)不(Bu)同(Tong)易(Yi)感(Gan)度(Du)所(Suo)控(Kong)制(Zhi)的(De)。这(Zhe)个(Ge)模(Mo)型(Xing)以(Yi)及(Ji)一(Yi)个(Ge)更(Geng)简(Jian)单(Dan)的(De)经(Jing)验(Yan)模(Mo)型(Xing),都(Du)预(Yu)测(Ce)计(Ji)划(Hua)中(Zhong)的(De)磷(Lin)负(Fu)荷(He)减(Jian)少(Shao)将(Jiang)降(Jiang)低(Di)生(Sheng)物(Wu)量(Liang),但(Dan)使(Shi)氮(Dan)和(He)光(Guang)更(Geng)容(Rong)易(Yi)获(Huo)得(De),这(Zhe)将(Jiang)增(Zeng)加(Jia)毒(Du)素(Su)的(De)产(Chan)生(Sheng),有(You)利(Li)于(Yu)产(Chan)毒(Du)细(Xi)胞(Bao),并(Bing)增(Zeng)加(Jia)毒(Du)素(Su)浓(Nong)度(Du)。▲ Abstract:Harmful cyanobacteria are a global environmental problem, yet we lack actionable understanding of toxigenic versus nontoxigenic strain ecology and toxin production. We performed a large-scale meta-analysis including 103 papers and used it to develop a mechanistic, agent-based model of Microcystis growth and microcystin production. Simulations for Lake Erie suggest that the observed toxigenic-to-nontoxigenic strain succession during the 2014 Toledo drinking water crisis was controlled by different cellular oxidative stress mitigation strategies (protection by microcystin versus degradation by enzymes) and the different susceptibility of those mechanisms to nitrogen limitation. This model, as well as a simpler empirical one, predicts that the planned phosphorus load reduction will lower biomass but make nitrogen and light more available, which will increase toxin production, favor toxigenic cells, and increase toxin concentrations.
她的父母曾是当地庄园的朗生,因此她一出生就成为庄园的农奴。“早晨天不亮上山拾牛粪,夜里捻羊毛到深夜”,然而最可恨的是还要忍受饥饿,“每天只给一小勺糌粑,根本吃不饱,只能不断喝水填饱肚子”。2019年电动汽车的发展还没有达到如今这种程度,那时候的电动汽车基本还是萌芽状态,也是燃油汽车最后的辉煌时刻。《我爱背入 电影》-国语字幕电视剧在线观看-酷客影院
接下来稳增长组合拳有望出台除了货币政策财政政策也将发挥更大的效力在稳地产、促消费、扩投资等方面仍有较大空间