《和平精英》新版本:定义“刺激”,还要定义“射击...
elasticsearch分词器 character filter ,tokenizer,token filter2023-09-02 18:14·孫攀龍分词器:规范化:normalization字符过滤器:character filter分词器:tokenizer令牌过滤器:token filter无论是内置的分析器(analyzer),还是自定义的分析器(analyzer),都由三种构件块组成的:character filters , tokenizers , token filters。内置的analyzer将这些构建块预先打包到适合不同语言和文本类型的analyzer中。Character filters (字符过滤器)字符过滤器以字符流的形式接收原始文本,并可以通过添加、删除或更改字符来转换该流。举例来说,一个字符过滤器可以用来把阿拉伯数字(??????????)转成成Arabic-Latin的等价物(0123456789)。一个分析器可能有0个或多个字符过滤器,它们按顺序应用。(PS:类似Servlet中的过滤器,或者拦截器,想象一下有一个过滤器链)Tokenizer (分词器)一个分词器接收一个字符流,并将其拆分成单个token (通常是单个单词),并输出一个token流。例如,一个whitespace分词器当它看到空白的时候就会将文本拆分成token。它会将文本“Quick brown fox!”转换为[Quick, brown, fox!](PS:Tokenizer 负责将文本拆分成单个token ,这里token就指的就是一个一个的单词。就是一段文本被分割成好几部分,相当于Java中的字符串的 split )分词器还负责记录每个term的顺序或位置,以及该term所表示的原单词的开始和结束字符偏移量。(PS:文本被分词后的输出是一个term数组)一个分析器必须只能有一个分词器Token filters (token过滤器)token过滤器接收token流,并且可能会添加、删除或更改tokens。例如,一个lowercase token filter可以将所有的token转成小写。stop token filter可以删除常用的单词,比如 the 。synonym token filter可以将同义词引入token流。不允许token过滤器更改每个token的位置或字符偏移量。一个分析器可能有0个或多个token过滤器,它们按顺序应用。小结&回顾analyzer(分析器)是一个包,这个包由三部分组成,分别是:character filters (字符过滤器)、tokenizer(分词器)、token filters(token过滤器)一个analyzer可以有0个或多个character filters一个analyzer有且只能有一个tokenizer一个analyzer可以有0个或多个token filterscharacter filter 是做字符转换的,它接收的是文本字符流,输出也是字符流tokenizer 是做分词的,它接收字符流,输出token流(文本拆分后变成一个一个单词,这些单词叫token)token filter 是做token过滤的,它接收token流,输出也是token流由此可见,整个analyzer要做的事情就是将文本拆分成单个单词,文本 ----> 字符 ----> token1 normalization:文档规范化,提高召回率停用词时态转换大小写同义词语气词#normalizationGET _analyze{ "text": "Mr. Ma is an excellent teacher", "analyzer": "english"}2 字符过滤器(character filter):分词之前的预处理,过滤无用字符HTML StripMappingPattern ReplaceHTML Strip##HTML Strip Character Filter###测试数据
I'm so happy!
DELETE my_indexPUT my_index{ "settings": { "analysis": { "char_filter": { "my_char_filter(自定义的分析器名字)":{ "type":"html_strip", "escaped_tags":["a"] } }, "analyzer": { "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter(自定义的分析器名字)"] } } } }}GET my_index/_analyze{ "analyzer": "my_analyzer", "text": "I'm so happy!
"}Mapping##Mapping Character Filter DELETE my_indexPUT my_index{ "settings": { "analysis": { "char_filter": { "my_char_filter":{ "type":"mapping", "mappings":[ "滚 => *", "垃 => *", "圾 => *" ] } }, "analyzer": { "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter"] } } } }}GET my_index/_analyze{ "analyzer": "my_analyzer", "text": "你就是个垃圾!滚"}Pattern Replace##Pattern Replace Character Filter #17611001200DELETE my_indexPUT my_index{ "settings": { "analysis": { "char_filter": { "my_char_filter":{ "type":"pattern_replace", "pattern":"(\\d{3})\\d{4}(\\d{4})", "replacement":"$1****$2" } }, "analyzer": { "my_analyzer":{ "tokenizer":"keyword", "char_filter":["my_char_filter"] } } } }}GET my_index/_analyze{ "analyzer": "my_analyzer", "text": "您的手机号是17611001200"}3 令牌过滤器(token filter)--停用词、时态转换、大小写转换、同义词转换、语气词处理等。比如:has=>have him=>he apples=>apple the/oh/a=>干掉大小写时态停用词同义词语气词#token filterDELETE test_indexPUT /test_index{ "settings": { "analysis": { "filter": { "my_synonym": { "type": "synonym_graph", "synonyms_path": "analysis/synonym.txt" } }, "analyzer": { "my_analyzer": { "tokenizer": "ik_max_word", "filter": [ "my_synonym" ] } } } }}GET test_index/_analyze{ "analyzer": "my_analyzer", "text": ["蒙丢丢,大G,霸道,daG"]}GET test_index/_analyze{ "analyzer": "ik_max_word", "text": ["奔驰G级"]}近义词匹配DELETE test_indexPUT /test_index{ "settings": { "analysis": { "filter": { "my_synonym": { "type": "synonym", "synonyms": ["赵,钱,孙,李=>吴","周=>王"] } }, "analyzer": { "my_analyzer": { "tokenizer": "standard", "filter": [ "my_synonym" ] } } } }}GET test_index/_analyze{ "analyzer": "my_analyzer", "text": ["赵,钱,孙,李","周"]}大小写#大小写GET test_index/_analyze{ "tokenizer": "standard", "filter": ["lowercase"], "text": ["AASD ASDA SDASD ASDASD"]}GET test_index/_analyze{ "tokenizer": "standard", "filter": ["uppercase"], "text": ["asdasd asd asg dsfg gfhjsdf asfdg g"]}#长度小于5的转大写GET test_index/_analyze{ "tokenizer": "standard", "filter": { "type": "condition", "filter":"uppercase", "script": { "source": "token.getTerm().length() < 5" } }, "text": ["asdasd asd asg dsfg gfhjsdf asfdg g"]}转小写转大写长度小于5的转大写停用词https://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-stop-tokenfilter.html#停用词DELETE test_indexPUT /test_index{ "settings": { "analysis": { "analyzer": { "my_analyzer自定义名字": { "type": "standard", "stopwords":["me","you"] } } } }}GET test_index/_analyze{ "analyzer": "my_analyzer自定义名字", "text": ["Teacher me and you in the china"]}#####返回 teacher and you in the china官方案例:官方支持的 token filterhttps://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-stop-tokenfilter.html4 分词器(tokenizer):切词默认分词器:standard(英文切割,根据空白切割)中文分词器:ik分词https://www.elastic.co/guide/en/elasticsearch/reference/7.10/analysis-whitespace-tokenizer.html配置内置的分析器内置的分析器不用任何配置就可以直接使用。当然,默认配置是可以更改的。例如,standard分析器可以配置为支持停止字列表:curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "std_english": { "type": "standard", "stopwords": "_english_" } } } }, "mappings": { "_doc": { "properties": { "my_text": { "type": "text", "analyzer": "standard", "fields": { "english": { "type": "text", "analyzer": "std_english" } } } } } }}'在这个例子中,我们基于standard分析器来定义了一个std_englisth分析器,同时配置为删除预定义的英语停止词列表。后面的mapping中,定义了my_text字段用standard,my_text.english用std_english分析器。因此,下面两个的分词结果会是这样的:curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{ "field": "my_text", "text": "The old brown cow"}'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{ "field": "my_text.english", "text": "The old brown cow"}'第一个由于用的standard分析器,因此分词的结果是:[ the, old, brown, cow ]第二个用std_english分析的结果是:[ old, brown, cow ]--------------------------Standard Analyzer (默认)---------------------------如果没有特别指定的话,standard 是默认的分析器。它提供了基于语法的标记化(基于Unicode文本分割算法),适用于大多数语言。例如:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "standard", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'上面例子中,那段文本将会输出如下terms:[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog's, bone ]-------------------案例3---------------------标准分析器接受下列参数:max_token_length : 最大token长度,默认255stopwords : 预定义的停止词列表,如_english_ 或 包含停止词列表的数组,默认是 _none_stopwords_path : 包含停止词的文件路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "my_english_analyzer": { "type": "standard", "max_token_length": 5, "stopwords": "_english_" } } } }}'curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "my_english_analyzer", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'以上输出下列terms:[ 2, quick, brown, foxes, jumpe, d, over, lazy, dog's, bone ]---------------------定义--------------------standard分析器由下列两部分组成:TokenizerStandard TokenizerToken FiltersStandard Token FilterLower Case Token FilterStop Token Filter (默认被禁用)你还可以自定义curl -X PUT "localhost:9200/standard_example" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "rebuilt_standard": { "tokenizer": "standard", "filter": [ "lowercase" ] } } } }}'-------------------- Simple Analyzer---------------------------simple 分析器当它遇到只要不是字母的字符,就将文本解析成term,而且所有的term都是小写的。例如:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "simple", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'输入结果如下:[ the, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]5 常见分词器:standard analyzer:默认分词器,中文支持的不理想,会逐字拆分。keyword分词器,不对输入的text内容做热呢和处理,而是将整个输入text作为一个tokenpattern tokenizer:以正则匹配分隔符,把文本拆分成若干词项。simple pattern tokenizer:以正则匹配词项,速度比pattern tokenizer快。whitespace analyzer:以空白符分隔 Tim_cookie6 自定义分词器:custom analyzerchar_filter:内置或自定义字符过滤器 。token filter:内置或自定义token filter 。tokenizer:内置或自定义分词器。分词器(Analyzer)由0个或者多个字符过滤器(Character Filter),1个标记生成器(Tokenizer),0个或者多个标记过滤器(Token Filter)组成说白了就是将一段文本经过处理后输出成单个单个单词PUT custom_analysis{ "settings":{ "analysis":{ } }}#自定义分词器DELETE custom_analysisPUT custom_analysis{ "settings": { "analysis": {#第一步:字符过滤器 接收原始文本,并可以通过添加,删除或者更改字符来转换字符串,转换成可识别的的字符串 "char_filter": { "my_char_filter": { "type": "mapping", "mappings": [ "& => and", "| => or" ] }, "html_strip_char_filter":{ "type":"html_strip", "escaped_tags":["a"] } }, "filter": { #第三步:令牌(token)过滤器 ,接收切割好的token流(单词,term),并且会添加,删除或者更改tokens, 如:lowercase token fileter可以把所有token(单词)转成小写,stop token filter停用词,可以删除常用的单词; synonym token filter 可以将同义词引入token流 "my_stopword": { "type": "stop", "stopwords": [ "is", "in", "the", "a", "at", "for" ] } }, "tokenizer": {#第2步:分词器,切割点,切割成一个个单个的token(单词),并输出token流。它会将文本“Quick brown fox!”转换为[Quick, brown, fox!],就是一段文本被分割成好几部分。 "my_tokenizer": { "type": "pattern", "pattern": "[ ,.!?]" } }, "analyzer": { "my_analyzer":{ "type":"custom",#告诉 "char_filter":["my_char_filter","html_strip_char_filter"], "filter":["my_stopword","lowercase"], "tokenizer":"my_tokenizer" } } } }}GET custom_analysis/_analyze{ "analyzer": "my_analyzer", "text": ["What is ,as.df ssin ? &
| is ! in the a at for "]}------------------------------自义定2---------------------------------------------curl -X PUT "localhost:9200/simple_example" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "rebuilt_simple": { "tokenizer": "lowercase", "filter": [ ] } } } }}'Whitespace Analyzerwhitespace 分析器,当它遇到空白字符时,就将文本解析成terms示例:curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "whitespace", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'输出结果如下:[ The, 2, QUICK, Brown-Foxes, jumped, over, the, lazy, dog's, bone. ]------------------------------Stop Analyzer-----------------top 分析器 和 simple 分析器很像,唯一不同的是,stop 分析器增加了对删除停止词的支持。默认用的停止词是 _englisht_(PS:意思是,假设有一句话“this is a apple”,并且假设“this” 和 “is”都是停止词,那么用simple的话输出会是[ this , is , a , apple ],而用stop输出的结果会是[ a , apple ],到这里就看出二者的区别了,stop 不会输出停止词,也就是说它不认为停止词是一个term)(PS:所谓的停止词,可以理解为分隔符)curl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "stop", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'输出[ quick, brown, foxes, jumped, over, lazy, dog, s, bone ]stop 接受以下参数:stopwords : 一个预定义的停止词列表(比如,_englisht_)或者是一个包含停止词的列表。默认是 _english_stopwords_path : 包含停止词的文件路径。这个路径是相对于Elasticsearch的config目录的一个路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "my_stop_analyzer": { "type": "stop", "stopwords": ["the", "over"] } } } }}'上面配置了一个stop分析器,它的停止词有两个:the 和 overcurl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "my_stop_analyzer", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'基于以上配置,这个请求输入会是这样的:[ quick, brown, foxes, jumped, lazy, dog, s, bone ]Pattern Analyzercurl -X POST "localhost:9200/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "pattern", "text": "The 2 QUICK Brown-Foxes jumped over the lazy dog\u0027s bone."}'由于默认按照非单词字符分割,因此输出会是这样的:[ the, 2, quick, brown, foxes, jumped, over, the, lazy, dog, s, bone ]pattern 分析器接受如下参数:pattern : 一个Java正则表达式,默认 \W+flags : Java正则表达式flags。比如:CASE_INSENSITIVE 、COMMENTSlowercase : 是否将terms全部转成小写。默认truestopwords : 一个预定义的停止词列表,或者包含停止词的一个列表。默认是 _none_stopwords_path : 停止词文件路径curl -X PUT "localhost:9200/my_index" -H 'Content-Type: application/json' -d'{ "settings": { "analysis": { "analyzer": { "my_email_analyzer": { "type": "pattern", "pattern": "\\W|_", "lowercase": true } } } }}'上面的例子中配置了按照非单词字符或者下划线分割,并且输出的term都是小写curl -X POST "localhost:9200/my_index/_analyze" -H 'Content-Type: application/json' -d'{ "analyzer": "my_email_analyzer", "text": "John_Smith@foo-bar.com"}'因此,基于以上配置,本例输出如下:[ john, smith, foo, bar, com ]Language Analyzers支持不同语言环境下的文本分析。内置(预定义)的语言有:arabic, armenian, basque, bengali, brazilian, bulgarian, catalan, cjk, czech, danish, dutch, english, finnish, french, galician, german, greek, hindi, hungarian, indonesian, irish, italian, latvian, lithuanian, norwegian, persian, portuguese, romanian, russian, sorani, spanish, swedish, turkish, thai7 中文分词器:ik分词安装和部署ik下载地址:https://github.com/medcl/elasticsearch-analysis-ikGithub加速器:https://github.com/fhefh2015/Fast-GitHub创建插件文件夹 cd your-es-root/plugins/ && mkdir ik将插件解压缩到文件夹 your-es-root/plugins/ik重新启动esIK文件描述IKAnalyzer.cfg.xml:IK分词配置文件主词库:main.dic英文停用词:stopword.dic,不会建立在倒排索引中特殊词库:quantifier.dic:特殊词库:计量单位等suffix.dic:特殊词库:行政单位surname.dic:特殊词库:百家姓preposition:特殊词库:语气词自定义词库:网络词汇、流行词、自造词等ik提供的两种analyzer:ik_max_word会将文本做最细粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,中华人民,中华,华人,人民共和国,人民,人,民,共和国,共和,和,国国,国歌”,会穷尽各种可能的组合,适合 Term Query;ik_smart: 会做最粗粒度的拆分,比如会将“中华人民共和国国歌”拆分为“中华人民共和国,国歌”,适合 Phrase 查询。热更新远程词库文件优点:上手简单缺点:词库的管理不方便,要操作直接操作磁盘文件,检索页很麻烦文件的读写没有专门的优化性能不好多一层接口调用和网络传输ik访问数据库MySQL驱动版本兼容性https://dev.mysql.com/doc/connector-j/8.0/en/connector-j-versions.htmlhttps://dev.mysql.com/doc/connector-j/5.1/en/connector-j-versions.html驱动下载地址https://mvnrepository.com/artifact/mysql/mysql-connector-java演示下载安装:扩展词库:重启es后生效=》本文来自博客园,作者:孙龙-程序员,转载请注明原文链接:https://www.cnblogs.com/sunlong88/p/17093708.html2024年12月30日,2024-07-08 19:09·鲁中晨报
《和平精英》新版本:定义“刺激”,还要定义“射击...
高性能计算应用对内存速率提出了更高的要求贬叠惭是当前骋笔鲍存储单元理想解决方案础滨发展驱动贬叠惭放量罢谤别苍诲贵辞谤肠别集邦咨询指出为提升整体础滨服务器的系统运算效能以及存储器传输带宽等狈痴滨顿滨础、础惭顿、滨苍迟别濒等高端础滨芯片中大多选择搭载贬叠惭
【门店营业时间】甚至于选择困难的天秤座