奶娘李梦结局?冲360问答
水侵入坝体
2024年12月20日,风云罢9全系列一共四款车型,纯电续航均是120办尘(肠濒迟肠):
奶娘李梦结局?冲360问答
作为惭笔痴车型电动侧滑门是必不可少的格瑞维亚配备7种侧滑门打开方式充分考虑真实用车场景像手拉、脚踢、按钮等无论是老人还是孩子都很方便内饰的工艺和用料符合该有的水准轿车化的风格不会像骋尝8太过商务比较大的特色是储物设计水杯架储物格很多实用性超强
PEM电解槽2023-11-20 11:50·带安全帽的大DPEM电解槽电堆是使用水产生氢气和氧气的电解(electrolysis system, EL)系统核心部件。但其只有在EL系统的几个附加组件和其他子系统(即BOP组件)的联合构成下才能运行和操作电堆。01 PEM电解系统基本架构原理图PEM电解系统的基本架构设计原理图。PEM电解系统的布局和架构设计没有通用标准,但该图包括此类系统的所有相关部件和子系统。它类似于碱性电解系统,但由于不存在碱液作为液体电解质,因此不需要气体洗涤器等部件。PEM电解系统的复杂度相比碱性系统因此较低。PEM电解系统的一般架构原理图尽管每个EL系统的布局设计与其他系统都存在不同,但EL系统及其子系统的典型系统边界依然值得探讨。根据上图,EL系统主要由三部分组成。PEM电堆是一个化学反应器(chemical reactor),其中水在直流电的作用下分解成氢气和氧气。PEM电解系统包括所有外围BOP组件,能够保证在所需的操作条件(如温度和压力)下正确操作电堆,并为电堆提供反应物并去除副产物。整流器将输入的交流电转换为稳定的直流电流。阳极侧至少包含一个水泵、一个热交换器、一个去离子器(主要安装在旁路中)、一个气水分离器、一个除雾器和一个控制阀等。阳极侧BOP组件:给水供应连接到阳极,因水在阳极侧消耗;在大多数情况下,上升气体(ascending gases)迫使两相流的自然对流足以为电堆供水。但是,水泵的固定水流量对于确保电堆冷却也至关重要;需要去离子器来捕获重金属阳离子,例如铁、铬和镍等。这些阳离子可能来自于外围的辅助部件(BOP)或是电堆内金属成分的腐蚀性产物;气水分离器位于电堆上方,分离来自电堆出口的氧气和水的两相流。根据气水分离器内部的部件设计,安装热交换器和挡板来调节水的温度并降低氧气的气溶胶含量(aerosol content of oxygen);随后,气体流经除雾器(coalescent filter,聚结过滤器),以将留存在氧气流中的细小液滴去除;除雾器后面的控制阀用于调节氧气侧压力。阴极侧BOP组件:在大多数情况下,阴极侧不需要水泵。但是,通过电渗透拖拽力从阳极传输到阴极的水需要与氢气分离并在阴极侧被收集。为此,需要在阴极侧安装一个带除雾器的较小的气/水分离器。随后,在控制阀之前放置一个热交换器和冷凝水收集器(a condensate trap)以降低露点。最后通过排水阀及液位控制,水被输送回阳极。PEM电解系统还包含根据安装地点和应用所需的其他辅助子系统。其他辅助子系统:根据安装现场的可用水质,需要一个水净化步骤(例如,反渗透)来净化给水,防止系统中的结垢和电堆降解。给水泵(feed water pump)控制阳极循环回路中的水位。大多数PEM电解系统都有额外的热交换器,用于水和气体冷却,例如,安装在冷凝水收集器(a condensate trap)前面。冷却装置为这些不同的热交换器提供冷却能量。通常,在控制阀后安装作为氢气储气罐的缓冲器(buffer tank),以保证下游应用的恒定氢气流量。氢气净化装置将气体净化至应用所需的纯度等级。通常,利用两级净化单元。在第一阶段中,剩余的氧和氢以催化方式生成水。在第二阶段中,通过例如在吸附塔(变压吸附[PSA])中除去水分,将氢气干燥至所需的露点。特别是,气体干燥是一个耗能的过程。需要干燥的氢气的部分流动以产生吸附柱,这导致所产生的氢气的损失。02 PEM电解系统运行原理在大气压条件下(atmospheric conditions)操作PEM电解电池是一个非常简单的过程。一旦阳极有水并且电池电压高于环境温度下的热中性电池电压,电极处就会产生氢气和氧气。然而,在相关技术的应用装置中,PEM电解系统在压力下运行,为后续应用提供压缩氢气和/或具有更高能量密度的氧气。通过对氢气和/或氧气加压,可以消除对外部气体压缩机的需求,从而减少了能源需求。压缩功率只需要能够在系统压力下泵送液态水,这比将产物气体压缩到所需压力要小得多。出于这个原因,(高)加压EL系统的开发是制造商的重点研究对象,目的是进一步提高整体效率。通常,PEM电解电池或电堆可以在平衡压力和“阳极到阴极”的压差下运行。在前一种情况下,电解电池的两侧在相同的压力下运行,该压力由氧气和氢气调节控制阀控制。在后一种情况下,氢气侧在高压(HP)下工作,而氧气侧没有或只是轻微加压。差压操作需要完善的电堆设计,因为在这种模式下膜需要承受压差。PEM电解系统(用于差压操作)优点:投资成本降低,因为低压(LP)侧的部件不需要承受压缩(compression proof)。产物气体的纯度更高,因为从LP侧的气体通过扩散和/或气体泄漏较低。压力控制不太复杂,电堆能够耐受压力积聚和释放。差压操作的缺点之一包括LP侧较高的气体流量,从而导致更大的水蒸汽质量分数(冷却,水回收和干燥的工作量更大)。此外,在电极处形成的较大气泡会增加质量传递受限的风险。平衡压力操作在碱性电解槽中是众所周知的,这是一个经过充分验证的概念。但是,适当精确的压力控制具有挑战性。两个控制阀的高精度控制可以使两个半电池之间的压力差、波动很小。,但一旦控制不准,大的压力波动将会对膜造成机械应力。03 PEM电解槽制造How To Build A PEM Hydrogen Generator质子交换膜电解槽(PEM)是电-氢转换的重要装置,是氢储能、能源脱碳的关键技术路径。质子交换膜电解水制氢槽体主要由质子交换膜、阴阳极催化层、多孔集电器和双极板等构成。高温会促使材料加速老化,在电氢转换的过程中,产生的热量需要被及时地移除,以保持体系温度的稳定性,同时电解槽内温度分布应尽可能均匀。PEM电解槽构成:Cathode Plate:阴极板Anode Plate:阳极板Frame:MEA框架MEA Cell:膜电极组Seals:密封构件Porous Ti GDL:PTL或者钛毡扩散层(GDL)PEM电解槽制造流程简述1)材料:双极板(阴极板,阳极板)、密封胶(PTFE/FKM/NBR)、膜电极等。2)设备:机械手、传送带、丝网印刷机、UV炉、热压机、油压机、测试台。3)工艺流程:双极板(阴极板,阳极板)—印刷密封胶—上膜电极—印刷密封胶—UV固化—人工堆叠和热压—压紧—安装外壳以及其他固件—调整和测试。1.聚四氟乙烯(PTFE):具有优良的耐腐蚀性,能够承受强酸、强碱和高温的腐蚀,耐高压,耐磨损,是电解槽方钢跟槽壳处常用的密封材料之一。2.氟橡胶(FKM):具有耐腐蚀、耐油、耐高温和高弹性的特性,能够在-20℃至200℃的环境下长期使用。可以用作电解槽方钢跟槽壳处的密封材料。3.氯丁橡胶(NBR):具有优异的耐油性、耐热性和耐磨性,常用于电解槽方钢跟槽壳处的密封。PEM水电解槽采用质子交换膜,隔绝电极两侧的气体,避免了碱性电解制氢隔膜气体易渗透的缺点。在PEM电解槽的运行过程中,质子交换膜提供了只允许水分子、水合氢离子通过的传输通道,将质子从电解槽阳极输送到电解槽阴极,在电解槽内部形成离子传递的通路。PEM在PEM电解槽中具有以下三种作用:1.作为固态电解质,将阳极反应产生的质子传导至阴极去参与阴极HER反应,为质子的传递提供通道。2.隔绝阴极侧和阳极侧的反应产物(氢气和氧气),避免氢气和氧气的相互渗透。3.为阴极侧和阳极侧的催化剂层提供物理支撑。核心部件膜电极(含工艺)、气体扩散层、双极板(阴极板,阳极板)、占据了PEM电解槽的90%的成本,而PEM的降本必须从这几个主要部件着手去改进。1)双极板(也叫BP)双极板是PEM电解水制氢设备的核心零部件,主要作用有支撑扩散层、传导气体和冷却水(同时作为反应物)、传递电解电流和电堆产热的传导等。1)材料:316不锈钢卷材(表面硬化过)。2)设备:冲切下料机、冲压模具、等离子渗氮炉、化学清洁池、普通清洁池。3)工艺流程:下料—冲压—化学清洁—普通清洁—表面等离子处理—成品。2)膜电极(也叫MEA)膜电极是 PEM 水电解池中电化学反应的场所。膜电极(membrane electrode assembly,MEA)是质子交换膜电池的核心组成成分。分别由质子交换膜(proton exchange membrane,PEM)、催化层(catalyst layer,CL)和扩散层(gas diffusion layer,GDL)三部分组成。1.阴极(Cathode,也叫正极或者氧侧):1)材料:带保护层的PEM膜、铂浆料。2)设备:涂布机、干燥炉、扫描仪、视觉识别仪、传送带。3)工艺流程:承接卷料—催化剂涂布—干燥固化—品质检查—下工序。2.阳极(Anode,也叫负极或者氢侧、燃料侧):1)材料:基层膜、阳极催化剂浆料(氧化铱、氧化钛等混合物)。2)设备:涂布机、干燥炉、扫描仪、视觉识别仪、传送带。3)工艺流程:承接PET薄膜卷料—涂布催化层、干燥固化—视觉系统品质检查—下工序。3)气体扩散层(也叫做GDL层)气体扩散层(GDL)是质子交换膜燃料电池的非常重要的组成部分,位于催化剂电极(CL)和双极板(BP)之间。它自身并不像CL层参与电化学反应,但却是燃料电池正常工作的非常重要的保证。GDL的作用首先为氢氧反应气体提供到达CL的路径;第二个作用是为生成水提供排泄的路径;第三个作用是使CL和BP实现电气连接;第四个作用是帮助散掉一部分的热量;第五个作用是机械支撑MEA。1、材料:铜、不锈钢、钼等多种金属粉末。2、设备:粉末混合搅拌装置、金属粉末压实设备、工装模具、烧结装置。3、工艺流程:承接金属粉末—搅拌混合—压实成型—烧结成毡。说明:当前阳极采用钛毡居多;阴极采用碳毡居多。需要指出的是,水电解槽产生的热量可通过阳极反应水移除,一定流量下,功率越高,下游温度升高越大。如果需要维持出口温度,需要进一步提高阳极水流量,这会造成阳极严重的水气冲刷,影响催化层的耐久性。为了增强热移除能力,控制电解槽平面内的温度差异,又避免增加阳极水流量,则常用的设计方式需要增加独立的冷却腔,承担热移除功能,这会增加电解槽及水电解制氢系统的复杂性和成本。说明:资料来自博世官网、知乎等,转发注明出处。补充说明四种电解槽的技术成熟度电解水制氢技术除了碱性电解水技术(ALK)和质子交换膜电解水技术(PEM),还有高温固体氧化物电解水技术(SOEC)和阴离子膜电解水技术(AEM)。(1)ALK:碱性水电解是一种成熟的工业制氢工艺,产物可靠性高,价格便宜。氢气在电解池的阴极生成,并在阳极生成氧气。电解质是一种减水溶液,当逸出气体形成气泡时,有效离子电导率会降低;产生的气体也可能会减少电极反应的表面积,对电解池性能产生不利影响。(2)PEM:PEM水电解槽是以固体质子交换膜PEM为电解质,以纯水为反应物,是质子交换膜燃料电池的逆反应。由于PEM电解质氢气渗透率较低,产生的氢气纯度高,仅需脱除水蒸气,工艺简单,安全性高;电解槽采用零间距结构,欧姆电阻较低,显著提高电解过程的整体效率,且体积更为紧凑;压力调控范围大,氢气输出压力可达数兆帕,适应快速变化的可再生能源电力输入。(3)SOEC:SOEC电解槽是固体氧化物燃料电池的逆反应,在高温(700-850℃)下运行,动力学上的优势使其可使用廉价的镍电极。如利用工业生产中高品质的余热(比如能量输入为75%电能+25%水蒸气中的热能),SOEC的系统效率(LHV H2 to AC)有望达到85%,欧盟2030年的目标是达到90%。(4)AEM:阴离子交换膜(AEM)电解槽的潜力在于将碱性电解槽的低成本与PEM的简单、高效相结合。该技术能使用非贵金属催化剂、无钛部件,并和PEM一样能在压差下运行,但是目前AEM膜存在化学、机械稳定性的问题,影响寿命曲线。而且AEM膜的传导性低,催化动力学慢和电极结构较差也影响着AEM的性能。性能的提升通常是通过调整膜的传导性,或通过添加支持性电解质(如KOH、NaHCO3)来实现,但这又会降低耐久性。在PEM中,OH-离子的传导速度要比H+质子慢三倍,因此AEM将面临更大的挑战,需要研制更薄或具有更高电荷密度的膜,同时对BOP辅助系统也提出了较高的要求。表3 四种电解水制氢技术比较资料来源:翌晶氢能、Enapter从技术成熟度 (TRL) 来看,以美国能源部2020年的划分:ALK、PEM、SOEC、AEM分别为8-9、8-9、5-6、2-3,欧盟2020年时对其SOEC的评估为TRL7,高于美国能源部的TRL5-6。也就是说,目前碱性和PEM都已经比较成熟,固体氧化物电解槽接近成熟,阴离子膜电解槽尚处于早期。图3 电解槽主要技术路线图片来源:中国节能协会氢能专业委员会欧美在制氢技术上领先,并将PEM和SOEC电解水作为近期研发重点,生物质(Biomass)制氢作为中期目标。另外,美国能源部将直接利用太阳的光和热(光电催化)制氢作为长期研发战略。实际上,在我国,PEM制氢与碱性制氢的成熟度还有较大差距,SOEC与国际市场比也有差距,潮州三环陈烁烁博士说,如果把成熟度分为9级,中国的碱性电解应该可以达到9,PEM应该还是8,而SOEC在国外有一些投入运行的样机,所以欧洲可以认为他们达到7级,不过中国暂时还没有看见系统运行,所以,最多也还处于6级。图4 美国能源部中长期制氢技术重点图片来源:中国节能协会氢能专业委员会三、新《规定》实现了我国知识产权领域反垄断制度规则内容的细化和进一步完善