《杨思敏版金瓶梅》高清不卡在线观看 - 全集剧情...高清完整版除却巫山不是云电影-免费在线观看-星辰影院
张梦书在与父母商量后,做了一个初步的规划,整个项目做下来需要400多万元资金,但她很有信心,用叁年时间收回成本。
2024年12月31日,我被他喋喋不休的声音一下子整的困意全无了,对于他的这种说法我是不太赞同的。因为他去的这个行程我知道,而且去之前人家把行程也发给他了,也说一路上有八个购物店,这些都事先告知了!
《杨思敏版金瓶梅》高清不卡在线观看 - 全集剧情...高清完整版除却巫山不是云电影-免费在线观看-星辰影院
但同样的有网友提出了自己的疑问为何老人因为小南(化名)的几句脏话就下如此狠手
天干地支纪年2019-10-21 14:35·艺考高老师天干地支纪年(1144年-2043年)嘻嘻网天干地支纪年(天干地支对照表)(1144年-2043年)甲 子乙 丑丙 寅丁 卯戊 辰己 巳庚 午辛 未壬 申癸 酉114411451146114711481149115011511152115312041205120612071208120912101211121212131264126512661267126812691270127112721273132413251326132713281329133013311332133313841385138613871388138913901391139213931444144514461447144814491450145114521453150415051506150715081509151015111512151315641565156615671568156915701571157215731624162516261627162816291630163116321633168416851686168716881689169016911692169317441745174617471748174917501751175217531804180518061807180818091810181118121813186418651866186718681869187018711872187319241925192619271928192919301931193219331984198519861987198819891990199119921993甲 戌乙 亥丙 子丁 丑戊 寅己 卯庚 辰辛 巳壬 午癸 未115411551156115711581159116011611162116312141215121612171218121912201221122212231274127512761277127812791280128112821283133413351336133713381339134013411342134313941395139613971398139914001401140214031454145514561457145814591460146114621463151415151516151715181519152015211522152315741575157615771578157915801581158215831634163516361637163816391640164116421643169416951696169716981699170017011702170317541755175617571758175917601761176217631814181518161817181818191820182118221823187418751876187718781879188018811882188319341935193619371938193919401941194219431994199519961997199819992000200120022003甲 申乙 酉丙 戌丁 亥戊 子己 丑庚 寅辛 卯壬 辰癸 巳116411651166116711681169117011711172117312241225122612271228122912301231123212331284128512861287128812891290129112921293134413451346134713481349135013511352135314041405140614071408140914101411141214131464146514661467146814691470147114721473152415251526152715281529153015311532153315841585158615871588158915901591159215931644164516461647164816491650165116521653170417051706170717081709171017111712171317641765176617671768176917701771177217731824182518261827182818291830183118321833188418851886188718881889189018911892189319441945194619471948194919501951195219532004200520062007200820092010201120122013甲 午乙 未丙 申丁 酉戊 戌己 亥庚 子辛 丑壬 寅癸 卯117411751176117711781179118011811182118312341235123612371238123912401241124212431294129512961297129812991300130113021303135413551356135713581359136013611362136314141415141614171418141914201421142214231474147514761477147814791480148114821483153415351536153715381539154015411542154315941595159615971598159916001601160216031654165516561657165816591660166116621663171417151716171717181719172017211722172317741775177617771778177917801781178217831834183518361837183818391840184118421843189418951896189718981899190019011902190319541955195619571958195919601961196219632014201520162017201820192020202120222023甲 辰乙 巳丙 午丁 未戊 申己 酉庚 戌辛 亥壬 子癸 丑118411851186118711881189119011911192119312441245124612471248124912501251125212531304130513061307130813091310131113121313136413651366136713681369137013711372137314241425142614271428142914301431143214331484148514861487148814891490149114921493154415451546154715481549155015511552155316041605160616071608160916101611161216131664166516661667166816691670167116721673172417251726172717281729173017311732173317841785178617871788178917901791179217931844184518461847184818491850185118521853190419051906190719081909191019111912191319641965196619671968196919701971197219732024202520262027202820292030203120322033甲 寅乙 卯丙 辰丁 巳戊 午己 未庚 申辛 酉壬 戌癸 亥119411951196119711981199120012011202120312541255125612571258125912601261126212631314131513161317131813191320132113221323137413751376137713781379138013811382138314341435143614371438143914401441144214431494149514961497149814991500150115021503155415551556155715581559156015611562156316141615161616171618161916201621162216231674167516761677167816791680168116821683173417351736173717381739174017411742174317941795179617971798179918001801180218031854185518561857185818591860186118621863191419151916191719181919192019211922192319741975197619771978197919801981198219832034203520362037203820392040204120422043来源:天干地支对照表:《科学》(20230113出版)一周论文导读2023-01-16 09:51·科学网编译 | 冯维维SCIENCE, January 2023, Volume 379 Issue 6628《科学》2023年1月,第379卷,6628期物理学PhysicsDuctile 2-GPa steels with hierarchical substructure具有分层子结构的2吉帕韧性钢▲ 作者:YUNJIE LI, GUO YUAN, LINLIN LI, JIAN KANG, FENGKAI YAN, PENGJU DU, DIERK RAABE, AND GUODONG WANGAuthors Info & Affiliations▲ 链接:https://www.science.org/doi/10.1126/science.add7857▲ 摘要:从交通运输到轻量化设计再到安全的基础设施,很多领域都需要机械强度和延展性的承重材料。但其中一大挑战是在一种材料中统一这两种功能。作者研究表明,在均匀伸长率>20%的情况下,普通中锰钢可以加工成抗拉强度>2.2吉帕。这需要多个横向锻造、深冷处理和回火步骤的结合。由层状和双重拓扑排列的马氏体与精细分散的保留奥氏体组成的分层微结构,同时激活多种微观机制来增强和延展性材料。组织良好的马氏体中的位错滑移和渐进变形刺激相变协同作用产生了较高的延性。研究者表示,该纳米结构设计策略可以生产出强度为2吉帕且具有延展性的钢,具有大规模工业生产的潜力。▲ Abstract:Mechanically strong and ductile load–carrying materials are needed in all sectors, from transportation to lightweight design to safe infrastructure. Yet, a grand challenge is to unify both features in one material. We show that a plain medium-manganese steel can be processed to have a tensile strength >2.2 gigapascals at a uniform elongation >20%. This requires a combination of multiple transversal forging, cryogenic treatment, and tempering steps. A hierarchical microstructure that consists of laminated and twofold topologically aligned martensite with finely dispersed retained austenite simultaneously activates multiple micromechanisms to strengthen and ductilize the material. The dislocation slip in the well-organized martensite and the gradual deformation-stimulated phase transformation synergistically produce the high ductility. Our nanostructure design strategy produces 2 gigapascal–strength and yet ductile steels that have attractive composition and the potential to be produced at large industrial scales.Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells稳定钙钛矿太阳能电池的面依赖性降解和面工程▲ 作者:CHUNQING MA, FELIX T. EICKEMEYER, SUN-HO LEE, DONG-HO KANG, SEOK JOON KWON, MICHAEL GR?TZEL , AND NAM-GYU PARK▲ 链接:https://www.science.org/doi/10.1126/science.adf3349▲ 摘要:有大量研究和策略致力于提高钙钛矿薄膜的稳定性;然而,不同钙钛矿晶面在稳定性中的作用仍然未知。作者揭示了甲胺碘化铅(FAPbI3)薄膜的面依赖性降解的潜在机制。研究明,(100)面基本上比(111)面更容易受到水分诱导的降解。通过实验和理论研究相结合,研究揭示了降解机理;随着铅-碘键长距离的延长,观察到强烈的水黏附,这导致(100)面上的δ相变。通过工程设计,可以获得更高的(111)面表面分数,(111)为主的晶体FAPbI3薄膜表现出优异的抗潮气稳定性。该发现阐明了未知的面相关降解机制和动力学。▲ Abstract:A myriad of studies and strategies have already been devoted to improving the stability of perovskite films; however, the role of the different perovskite crystal facets in stability is still unknown. Here, we reveal the underlying mechanisms of facet-dependent degradation of formamidinium lead iodide (FAPbI3) films. We show that the (100) facet is substantially more vulnerable to moisture-induced degradation than the (111) facet. With combined experimental and theoretical studies, the degradation mechanisms are revealed; a strong water adhesion following an elongated lead-iodine (Pb-I) bond distance is observed, which leads to a δ-phase transition on the (100) facet. Through engineering, a higher surface fraction of the (111) facet can be achieved, and the (111)-dominated crystalline FAPbI3 films show exceptional stability against moisture. Our findings elucidate unknown facet-dependent degradation mechanisms and kinetics.微生物学MicrobiologyDome1–JAK–STAT signaling between parasite and host integrates vector immunity and development寄生虫和宿主间信号传递整合媒介免疫和发育▲ 作者:VIPIN S. RANA, CHRYSOULA KITSOU, SHRABONI DUTTA, MICHAEL H. RONZETTI, MIN ZHANG, QUENTIN BERNARD, ALEXIS A. SMITH, JULEN TOMáS-CORTáZAR, XIULI YANG, UTPAL PAL, etc.▲ 链接:https://www.science.org/doi/10.1126/science.abl3837▲ 摘要:蜱起源于近2.25亿年前的一种自由生活的食腐螨,已经进化成一种具有高度适应性的单系吸血体外寄生虫。与大多数喜欢单一脊椎动物宿主的地理活动受限的蜱种不同,硬蜱可以寄生在许多脊椎动物体内,传播不同的病原体。硬蜱在其多年的生命周期中只经历三次进食活动,摄取的血餐几乎是它们体重的100倍。它们特有的生理适应可能是由其复杂的吸血和与共同进化的脊椎动物宿主的联系所形成的。蜱虫如何维持其复杂的胚胎后发育程序以及它们的媒介能力的分子基础尚不清楚。作者发现,蜱含有一种功能性的JAK-STAT信号级联,可诱导强有力的抗菌反应,能够限制蜱传病原体的增殖。该途径在许多节肢动物中被 UPD等细胞因子样分子激活。但硬蜱基因组异常缺乏可识别的UPD直系同源物。▲ Abstract:Ticks have evolved into a monophyletic group of highly adapted blood-feeding ectoparasites that originated from a clade of free-living scavenger mites nearly 225 million years ago. Unlike most geographically confined tick species that prefer a single vertebrate host, Ixodes spp. can parasitize many vertebrates and transmit diverse pathogens. Ixodid ticks undergo only three feeding events during their multiyear lifespan, ingesting blood meals that are nearly 100 times their weight. Their characteristic physiological adaptations were likely shaped by their sophisticated hematophagy and associations with coevolving vertebrate hosts. The molecular basis of how ticks maintain their complex postembryonic developmental program as well as their vectorial competence remains unclear. Ticks contain a functional JAK–STAT signaling cascade that induces robust antibacterial responses capable of limiting the proliferation of tick-borne pathogens. The pathway is activated in many arthropods by cytokine-like molecules such as Unpaired (UPD). However, the Ixodes scapularis genome is unusually devoid of recognizable UPD orthologs.ApoE isoform– and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathyTau小鼠病理模型解析依赖ApoE亚型和微生物群的神经退行性疾病▲ 作者:DONG-OH SEO, DAVID O’DONNELL, NIMANSHA JAIN, JASON D. ULRICH, JASMIN HERZ, YUHAO LI, MACKENZIE LEMIEUX, JIYE CHENG, HAO HU,, AND DAVID M. HOLTZMAN, etc.▲ 链接:https://www.science.org/doi/10.1126/science.add1236▲ 摘要:大脑中某些形式的Tau蛋白的积累与神经细胞的损失、炎症以及阿尔茨海默病和其他几种神经退行性疾病的认知能力下降有关。载脂蛋白-E(APOE)是阿尔茨海默病最强的遗传风险因素,调节脑炎症和Tau介导的脑损伤;然而,肠道菌群也调节大脑炎症。在Tau介导的脑损伤小鼠模型中,研究者发现,肠道微生物群的操纵导致炎症、Tau病理和脑损伤因性别和APOE依赖的方式大幅减少。▲ Abstract:The accumulation of certain forms of the tau protein in the brain is linked to loss of nerve cells, inflammation, and cognitive decline in Alzheimer’s disease and several other neurodegenerative diseases. Apolipoprotein-E (APOE), the strongest genetic risk factor for Alzheimer’s disease, regulates brain inflammation and tau-mediated brain damage; however, the gut microbiota also regulates brain inflammation. In a mouse model of tau-mediated brain injury, Seo et al. found that manipulation of the gut microbiota resulted in a strong reduction of inflammation, tau pathology, and brain damage in a sex- and APOE-dependent manner.生物物理学BiophysicsNeuromorphic functions with a polyelectrolyte-confined fluidic memristor聚电解质受限流体忆阻器的神经形态功能▲ 作者:TIANYI XIONG, CHANGWEI LI, XIULAN HE, BOYANG XIE, JIANWEI ZONG, YANAN JIANG, WENJIE MA, FEI WU, JUNJIE FEI, AND LANQUN MAO▲ 链接:https://www.science.org/doi/10.1126/science.adc9150▲ 摘要:利用人工流体系统再现基于离子通道的神经功能一直是神经形态计算和生物医学应用的一个理想目标。在这项研究中,聚电解质-受限流体忆阻器(PFM)成功地实现了神经形态功能,其中受限的聚电解质-离子相互作用导致了滞后的离子传输,从而导致了离子记忆效应。采用超低能耗的PFM模拟了各种不同的电脉冲模式。PFM的流体特性使模拟化学调节电脉冲成为可能。更重要的是,化学-电信号转导是由单个PFM实现的。由于其结构与离子通道相似,PFM是通用的,易于与生物系统接口,为通过引入丰富的化学设计构建具有高级功能的神经形态设备铺平了道路。▲ AbstractReproducing ion channel–based neural functions with artificial fluidic systems has long been an aspirational goal for both neuromorphic computing and biomedical applications. In this study, neuromorphic functions were successfully accomplished with a polyelectrolyte-confined fluidic memristor (PFM), in which confined polyelectrolyte–ion interactions contributed to hysteretic ion transport, resulting in ion memory effects. Various electric pulse patterns were emulated by PFM with ultralow energy consumption. The fluidic property of PFM enabled the mimicking of chemical-regulated electric pulses. More importantly, chemical-electric signal transduction was implemented with a single PFM. With its structural similarity to ion channels, PFM is versatile and easily interfaces with biological systems, paving a way to building neuromorphic devices with advanced functions by introducing rich chemical designs.Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels二维纳米流体通道中的长时记忆和突触样动力学▲ 作者:P. ROBIN, T. EMMERICH, A. ISMAIL, A. NIGUèS, Y. YOU, G.-H. NAM, A. KEERTHI, A. SIRIA, A. K. GEIM, AND L. BOCQUET▲ 链接:https://www.science.org/doi/10.1126/science.adc9931▲ 摘要:通过纳米级孔隙进行微调的离子传输是许多生物过程的关键,包括神经传递。最近的进展使水和离子的限制成为二维,揭示了在更大尺度上无法实现的传输特性,并引发了重现生物系统离子机械的希望。作者通过实验证明了记忆出现在水电解质运输(亚)纳米级通道。他们揭示了两种类型的纳米流体忆阻器,取决于通道材料和限制,记忆范围从分钟到小时。研究解释了离子自组装或表面吸附等界面过程如何出现大的时间尺度,能够用纳米流控系统实现Hebbian学习。该结果为水电解芯片的仿生计算奠定了基础。▲ Abstract:Fine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveil two types of nanofluidic memristors depending on channel material and confinement, with memory ranging from minutes to hours. We explain how large time scales could emerge from interfacial processes such as ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the foundation for biomimetic computations on aqueous electrolytic chips.