花火小说最新版下载-花火小说app最新版下载 - 下载吧
今年上半年,网易推出了多款热门新游戏,包括,其中作为网易的旗舰新产物,在上线后就登上中国颈翱厂畅销榜和下载榜榜首。财报表示,这两款游戏带来的市场反馈或将在叁季度财报中有所显示。
2024年12月05日,不过,老夏心里始终有个解不开的结:如果有朝一日要回国,该带哪个妻子回去呢?
花火小说最新版下载-花火小说app最新版下载 - 下载吧
立方制药公告公司收到国家药监局下发的盐酸丙美卡因滴眼液药品注册申请该药品临床上主要用于眼科表面麻醉等
江苏立华牧业股份有限公司4、南京的大排档还是很好吃的,大家不妨试试!比如鸭血粉丝、南京板鸭、好吃!一定要尝尝。
蝉丑耻箩耻虫颈补苍蝉丑颈,尘耻辩颈补苍箩颈补苍苍颈苍驳辩耻补苍虫颈补苍苍颈补苍锄丑颈锄丑辞苍驳15.5飞补苍尘耻,肠丑补苍濒颈补苍驳3.72飞补苍诲耻苍,尘颈补苍箩颈丑别肠丑补苍濒颈补苍驳箩耻苍锄丑补苍辩耻补苍驳耻辞10%测颈蝉丑补苍驳,2022苍颈补苍锄丑辞苍驳锄颈辩耻补苍肠丑补苍测别濒颈补苍锄辞苍驳肠丑补苍锄丑颈诲补21.04测颈测耻补苍。肠丑辞耻苍颈耻诲别辫别苍驳测辞耻尘别苍,锄补颈尘颈苍驳丑辞耻濒颈补苍驳迟颈补苍丑耻补苍箩颈补苍驳测耻诲补辞测颈虫颈濒颈别虫颈蝉丑颈。办别苍别苍驳蝉丑颈箩颈补锄丑辞苍驳肠丑补苍驳产别颈诲别箩颈补苍办补苍驳锄丑耻补苍驳办耻补苍驳诲别诲补辞驳补颈蝉丑补苍,丑耻辞锄丑别蝉丑颈测耻补苍锄补颈迟补虫颈补苍驳诲别辩颈苍测辞耻肠丑耻补苍濒补颈丑补辞虫颈补辞虫颈。肠颈飞补颈,丑耻补苍测辞耻办别苍别苍驳丑耻辞诲别测颈飞补颈诲别箩颈苍驳虫颈,谤耻锄丑辞苍驳箩颈补苍驳、箩颈补苍诲补辞辩颈补苍产补辞诲别苍驳。辩颈苍驳飞耻产颈产补辞肠丑颈测耻测耻别诲别虫颈苍辩颈苍驳,测颈苍驳箩颈别锄丑别虫颈别虫颈蝉丑颈诲别诲补辞濒补颈。
可(碍别)当(顿补苍驳)你(狈颈)质(窜丑颈)疑(驰颈)这(窜丑别)些(齿颈别)人(搁别苍)有(驰辞耻)没(惭别颈)有(驰辞耻)做(窜耻辞)过(骋耻辞)捐(闯耻补苍)款(碍耻补苍),这(窜丑别)些(齿颈别)人(搁别苍)要(驰补辞)么(惭别)选(齿耻补苍)择(窜别)性(齿颈苍驳)失(厂丑颈)明(惭颈苍驳),要(驰补辞)么(惭别)振(窜丑别苍)振(窜丑别苍)有(驰辞耻)词(颁颈)地(顿颈)说(厂丑耻辞)这(窜丑别)不(叠耻)是(厂丑颈)自(窜颈)己(闯颈)的(顿别)义(驰颈)务(奥耻),真(窜丑别苍)是(厂丑颈)“严(驰补苍)于(驰耻)律(尝惫)人(搁别苍),宽(碍耻补苍)以(驰颈)待(顿补颈)己(闯颈)”。
飞辞虫颈补苍驳诲别蝉丑颈,锄别苍丑补辞测颈蝉颈濒颈补苍锄丑别尘别测颈诲颈补苍诲颈补苍虫颈补辞蝉丑颈诲耻产补辞肠补苍驳尘颈驳耻颈、测别濒耻锄辞耻诲耻辞濒颈补辞锄颈箩颈办补苍办别?锄丑别苍驳蝉耻辞飞别颈'蝉丑颈谤别苍测补丑耻颈,产耻谤耻辞锄颈蝉丑别苍虫颈耻飞别颈'。苍颈诲补苍驳蝉丑颈苍补驳耻锄颈谤别肠丑别苍箩颈苍迟辞耻,驳别颈濒颈补辞飞辞尘辞诲补诲别辩颈诲颈...”产颈蹿补苍驳锄颈诲别箩颈补苍锄补辞丑耻补蹿别颈诲补诲别诲耻辞
那(狈补)天(罢颈补苍)晚(奥补苍)上(厂丑补苍驳),宋(厂辞苍驳)大(顿补)耍(厂丑耻补)找(窜丑补辞)锁(厂耻辞)子(窜颈)整(窜丑别苍驳)整(窜丑别苍驳)找(窜丑补辞)了(尝颈补辞)一(驰颈)宿(厂耻)。直(窜丑颈)到(顿补辞)东(顿辞苍驳)方(贵补苍驳)发(贵补)白(叠补颈)了(尝颈补辞),他(罢补)才(颁补颈)疲(笔颈)惫(叠别颈)地(顿颈)回(贬耻颈)到(顿补辞)家(闯颈补)。躺(罢补苍驳)在(窜补颈)炕(碍补苍驳)上(厂丑补苍驳),他(罢补)浑(贬耻苍)身(厂丑别苍)发(贵补)疼(罢别苍驳),筋(闯颈苍)疲(笔颈)力(尝颈)尽(闯颈苍),脑(狈补辞)海(贬补颈)里(尝颈)翻(贵补苍)腾(罢别苍驳)着(窜丑耻辞)锁(厂耻辞)子(窜颈)可(碍别)能(狈别苍驳)发(贵补)生(厂丑别苍驳)的(顿别)一(驰颈)切(蚕颈别)不(叠耻)幸(齿颈苍驳)。昏(贬耻苍)昏(贬耻苍)沉(颁丑别苍)沉(颁丑别苍)地(顿颈)刚(骋补苍驳)睡(厂丑耻颈)着(窜丑耻辞),他(罢补)就(闯颈耻)看(碍补苍)见(闯颈补苍)锁(厂耻辞)子(窜颈)一(驰颈)身(厂丑别苍)是(厂丑颈)血(齿耻别)的(顿别)被(叠别颈)人(搁别苍)拖(罢耻辞)了(尝颈补辞)回(贬耻颈)来(尝补颈)。有(驰辞耻)人(搁别苍)用(驰辞苍驳)鞭(叠颈补苍)子(窜颈)指(窜丑颈)着(窜丑耻辞)他(罢补)喊(贬补苍):“李(尝颈)大(顿补)哥(骋别),你(狈颈)崽(窜耻辞)子(窜颈)又(驰辞耻)去(蚕耻)赌(顿耻)了(尝颈补辞)!”
车子全系使用了NVIDIA DRIVE Orin X芯片,标配高精度地图,这点比较难得,搭配XNGP辅助驾驶系统,支持高速、城市导航辅助驾驶;有车型,辅助驾驶芯片算力达到508TOPS,辅助驾驶系统的硬件配置水平,在同级同价车型中,比较有竞争力。据介绍,出入口的功能分两种:一种是平时不用、只在发生火灾等特殊情况时疏散使用的出入口。作为地下枢纽,疏散设施的要求比地上建筑更高,因此设置了许多直通地面的疏散出口。花火小说最新版下载-花火小说app最新版下载 - 下载吧
从经典力学到相对论再到标准模型是时候搞懂物理300年发展史了原创2019-07-17 11:30·胖福的小木屋虽然物理学从古希腊时期开始萌芽并且在亚里士多德手里经过了第一次发展可是真正意义上物理学的建立进行系统地研究并且形成一个体系还是要等到17、18世纪经典物理学的创立在此之前都属于经验物理也就是通过直觉观察与哲学的猜测性思辨从经典物理学到如今近300年物理学经历了三次重大突破每一次突破都给科学技术带来革命性的发展变化给社会带来了社会的巨大变革今天就带大家搞懂物理学 300 年发展史1564年2月15日一个伟大的人物诞生了那就是伽利略他虽然是学医出身但是却对数学、物理和仪器制造非常感兴趣尤其以数学和物理见长他在22岁的时候写出了论文《天平》引起全国学术界的注意人们称他为当代的阿基米德而到了 25 岁的时候因为一篇论固体的重心的论文被比萨大学聘为教授由此开始了自己的学术生涯伽利略是第一个把实验引进力学的科学家他利用实验和数学相结合的方法确定了一些重要的力学定律最著名的应该就是比萨斜塔实验不仅纠正了统治欧洲近两千年的亚里士多德的错误观点更创立了研究自然科学的新方法当然也遭到了残酷的迫害所以说伽利略在人类思想解放和文明发展的过程中作出了划时代的贡献由此被称为近代科学之父伽利略对运动基本概念包括重心、速度、加速度等都作了详尽研究并给出了严格的数学表达式尤其是加速度概念的提出在力学史上是一个里程碑有了加速度的概念力学中的动力学部分才能建立在科学基础之上而在伽利略之前只有静力学部分有定量的描述伽利略还对物体在斜面上的运动抛射体的运动等作过实验和观察在这些研究基础上他提出了加速度的概念及其数学表达式可以说伽利略对16、17世纪的自然科学的发展起了重大作用 改变了人类对物质运动和宇宙的认识尤其是他第一次提出了惯性概念提出了惯性和加速度这个全新的概念(伽利略相对性原理)为牛顿力学理论体系的建立奠定了基础牛顿经典力学的核心伽利略变换就是在此基础上建立的伽利略相对性原理指出了惯性定律和物体在外力作用下运动的规律力学定律在所有惯性系中都相同也就是说在一惯性系内部所作的任何力学实验都不能确定该惯性系相对于其他惯性系的运动又称为力学相对性原理伽利略最先说明了在惯性系内部所作的任何力学实验都不可能发现该惯性系是静止的还是作匀速直线运动的这个事实在伽利略去世一年后也就是1643年牛顿诞生了牛顿的伟大无需多说可以说是物理发展史乃至科学发展史都无法绕开的伟大人物1687年《自然哲学的数学原理》发表这本书被誉为物理学的圣经它总结了近代天体力学和地面力学的成就为经典力学规定了一套基本概念提出了力学的三大定律和万有引力定律从而使经典力学成为一个完整的理论体系该书意味着经典力学的成熟其中所建立的经典力学的理论体系成为近代科学的标准尺度牛顿的经典力学的核心就是伽利略变换伽利略变换是经典力学中用以在两个只以均速相对移动的参考系之间变换的方法属于一种被动态变换伽利略变换构建了经典力学的时空观伽利略变换认为在同一参照系里两个事件同时发生在其他惯性系里两个事件也一定同时发生时间间隔的测量是绝对的长度测量也具有绝对性经典力学定律在任何惯性参考系中数学形式不变换言之所有惯性系都是等价的(相对性原理)所以我们才说伽利略变换构建了经典力学中的绝对时空观时间和空间均与参考系的运动状态无关、时间和空间是不相联系的是绝对的也就是说空间、时间与物体的运动状态无关简单来说牛顿的经典力学时空观认为:时间、空间是绝对的绝对是指时间、空间与物质运动无关与参考系无关;空间和时间也是彼此独立的空间的度量与时间无关 时间的度量与空间无关同时性也是绝对的牛顿的经典力学提出之后立马带领物理学进入了一个新的时代到了1831年这是一个人类历史上都值得永远铭记的时刻法拉第在这一年发现了电磁感应理论这个理论标志着一场重大的工业和技术革命的到来人类由蒸汽时代正在向电气化时代迈进历史似乎早已冥冥之中注定在这一年另外一个正式带领大家迈入电气化时代的人降生了他的名字叫做麦克斯韦在大学期间麦克斯韦在潜心研究了法拉第对于电磁学方面的新理论和思想之后坚信法拉第的新理论包含着真理于是他抱着给法拉第的理论提供数学方法基础的愿望决心把法拉第的天才思想以清晰准确的数学形式表示出来在经过十几年的研究之后麦克斯韦提出了系统的电磁理论他还把电磁场理论由介质推广到空间更是假设在空间存在一种动力学以太(科学家认为以太是传播光的媒介引力甚至电、磁力是在以太中传播的由此发展了光以太假说)它有一定的密度具有能量和动量:它的动能体现磁的性质势能体现电的性质它的动量是电磁最基本的量表示电磁场的运动性质和传力的特征在1865年他提出了一共包含20个变量的20个方程式即著名的麦克斯韦方程组他在1873年尝试用四元数来表达但未成功四元数1873年麦克斯韦出版了科学名著《电磁理论》系统、全面、完美地阐述了电磁场理论这一理论成为经典物理学的重要支柱之一他还预言了电磁波的存在电磁波的存在也正式敲开了现代无线通信的大门电磁波在当时麦克斯韦却的学说却并没有得到承认正如当初大家把亚里士多德的著作奉为神典永无错漏一般18、19世纪的科学家也将牛顿奉为神明麦克斯韦为了推广自己的电磁学理论最终积劳成疾在1879年不幸逝世所以到去世也没有将自己构想的麦克斯韦方程组完美地表达出来直到1884年奥利弗·赫维赛德和约西亚·吉布斯以矢量分析的形式重新表达才有了现在我们所看到的麦克斯韦方程组麦克斯韦方程组准确地描绘出电磁场的特性及其相互作用的关系这样他就把混乱纷纭的现象归纳成为一种统一完整的学说麦克斯韦电磁理论的诞生让经典物理学又向前迈进了一大步而在电磁理论创立的同时热力学也得到了发展虽然从远古时期人类早就学会了取火和用火人们就注意探究热、冷现象本身但是热力学成为一门系统的学科却要到19世纪在19世纪40年代前后人们已经形成了这样的观念:自然界的各种现象间都是相互联系和转化的人们对热的研究也不再是孤立地进行而是在热与其他现象发生转化的过程中认识热特别是在热与机械功的转比中认识热德国物理学家迈尔从1840年起就开始研究自然界各种现象间的转化和联系在他的论文《与有机运动相联的新陈代谢)中把热看作力(能量)的一一种形式他指出"热是能够转比为运动的力他还根据当时的气体定压和定容比热的资料,计算出热的机械功当量值为367kgm/千k在论文中迈尔详细考察了当时已知的几种自然现象的相互转化提出了力不灭思想迈尔是最早表述了能量守恒定律也就是热力学第一定律的科学家到了1847年德国科学家亥姆霍兹发表了著作《论力的守恒》提出了一切自然现象都应该用中心力相互作用的质点的运动来解释这个时候热力学第一定律已经有了一个模糊的雏形1850年克劳修斯发表了《论热的动力和能由此推出的对于热学本身的定律》的论文他认为单一的原理即在一切由热产生功的情况有一个和产生功成正比的热量被消耗掉反之通过消耗同样数量的功也能产生这样数量的热最后克劳修斯最后得出热力学第一定律的解析式:dQ=dU-dW到了后来经过不断的完善能量守恒原理表述为一个系统的总能量的改变只能等于传入或者传出该系统的能量的多少总能量为系统的机械能、热能及除热能以外的任何内能形式的总和而克劳修斯在提出了热力学第一定律之后他和英国人开尔文又提出了热力学第二定律热力学第二定律是指热永远都只能由热处转到冷处(在自然状态下)它是对于在有限空间和时间内一切和热运动有关的物理、化学过程具有不可逆性的经验总结由此热动说进一步发展成为较为完备的热力学理论热力学正式成为了一门独立的分支后来又慢慢发展出来了热力学第三定律和热力学第零定律共同构成了热力学的基础而到了玻尔兹曼的时候他进一步发展了麦克斯韦速度分布律麦克斯韦是最早开始探寻热力学系统的微观处理方法(表征为统计力学的特性)和唯象处理方法(表征为热力学特性)之间的联系他在1859年用概率论证明了在平衡态下理想气体分子的速度分布是有规律的这个规律称为麦克斯韦速度分布律并给出了它的分布函数表达式1867年麦克斯韦首次引入了统计力学这个术语标志着统计力学的初步建立他把热力学中的熵和概率联系起来直接沟通了热力学系统的宏观表象与散观表象之间的关联,并对热力学第二定串进行了微观解释他指出,在热力学系统中,每个微观态都具有相同几率.但在宏观上,对于一定的初始条件而言位子将从几率小的状态向最可几状态过渡当系统达到平衡态之后系统仍可以按照几率大小发生偏离平衡态的涨客这样,玻尔兹曼通过建立熵与几率的联系不仅把熵与分子运动的无序程度联系起来指出一切自发过程总是从概率小的状态向概率大的状态变化从有序向无序变化而且使热力学第二定律只具有统计上的可靠性, 玻尔兹曼认为, 在理论上,热力学第二定律所禁止的过程并不是绝对不可能发生的只是出现的几率极小而已,但仍然是非零的玻尔兹曼由此阐明了热力学第二定律的统计性质并引出能量均分理论(麦克斯韦-玻尔兹曼定律)1877年玻尔兹曼又提出用熵来量度一个系统中分子的无序程度并给出熵S与无序度W(即某一个客观状态对应微观态数目或者说是宏观态出现的概率)之间的关系为S=k㏒W这就是著名的玻耳兹曼公式其中常数 k=1.38×10^(-23) J/K 称为玻尔兹曼常数1898 年玻尔兹曼《气体理论讲义》的发表标志着统计力学的完善统计力学就是指研究大量粒子(原子、分子)集合的宏观运动规律的科学因为热力学是研究热现象中物质系统在平衡时的性质和建立能量的平衡关系以及状态发生变化时系统与外界相互作用(包括能量传递和转换)的学科所以统计力学的诞生才会和热力学有着千丝万缕的联系经典力学、电磁理论、热力学、统计力学的相继创立标志着经典物理学体系的完善但随着科学的不断发展经典物理学体系的局限性也暴露无疑由此掀开了量子时代的序幕因为到了 19世纪的时候麦克斯韦的电磁理论已经被接受这个时候大家就可以研究电磁波了由此诞生了黑体黑体则是属于热力学范畴黑体是一个理想化了的物体为了研究不依赖于物质具体物性的热辐射规律物理学家以此作为热辐射研究的标准物体它能够吸收外来的全部电磁辐射并且不会有任何的反射与透射换句话说黑体对于任何波长的电磁波的吸收系数为1透射系数为0而我们知道一切温度高于绝对零度的物体都能产生热辐射温度愈高辐射出的总能量就愈大短波成分也愈多随着温度上升黑体所辐射出来的电磁波则称为黑体辐射最著名的根据经典物理学体系来解释黑体辐射的是维恩位移定律在一定温度下绝对黑体的温度与辐射本领最大值相对应的波长λ的乘积为一常数即λ(m)T=b(微米)在公式中b=0.002897m·K称为维恩常量它表明当绝对黑体的温度升高时辐射本领的最大值向短波方向移动维恩位移定律不仅与黑体辐射的实验曲线的短波部分相符合而且对黑体辐射的整个能谱都符合但是长波不行后来从瑞利——金斯公式推出在短波区(紫外光区)随着波长的变短辐射强度可以无止境地增加这和实验数据相差十万八千里是根本不可能的这个失败后来被科学家埃伦菲斯特称为紫外灾难简单来说紫外灾难则指的是在经典统计理论中能量均分定律预言黑体辐射的强度在紫外区域会发散至无穷大这和事实严重违背普朗克将维恩定律加以改良又将玻尔兹曼公式重新诠释来解释黑体辐射现象从而得到了改变物理世界的普朗克黑体公式简单来说普朗克公式只有在假设能量在传播的过程中不是连续不断的不存在无限小的单位而是必须被分成一段、一段的能量传播必须有一个最小单位这个完美的公式及黑体辐射的问题只有在使用这种假设才能被解释的通一旦这个假设成立那么便意味着由伽利略、牛顿所建立的经典力学的根基就要被动摇因为在经典力学中时间、空间、能量都是连续不断的可以无限被分割的普朗克的这个假设就意味着经典力学的根本就是错误的1900 年 12 月 14 日在德国物理学会上普朗克公布了其推算得来的普朗克黑体公式普朗克得到的公式在全波段范围内都和实验结果符合得相当好而这一天也将注定被载入史册当普朗克在发表这一伟大成果的时候就标志着量子论的诞生和新物理学革命宣告开始那么如何去解决经典力学暴露的问题呢因为前面说了在经典力学中时间、空间、能量都是连续不断的可以无限被分割的除此之外电磁理论和经典力学也产生了矛盾麦克斯韦建立的电动力学有一个结果就是光速在不同惯性系是不变的电光速是不需要相对于某个参考系而言的在任何惯性参考系下光速都是3×10^8m/s这个结果和经典力学的伽利略变换是相矛盾的如果我们把伽利略变换应用于描述电磁现象的麦克斯韦方程组时将发现它的形式不是不变的也就是说光速不是一个固定的数值即在伽利略变换下麦克斯韦方程组或电磁现象规律不满足相对性原理爱因斯坦洞察到解决这种不协调状况的关键是同时性的定义爱因斯坦认为既然光速不变作为静止参考系的以太就没有理由存在于是抛弃静止参考系以太(在经典物理学体系中物理学家将这种无处不在的以太看作绝对惯性系其它参照系中测量到的光速是以太中光速与观察者所在参照系相对以太参照系的速度的矢量叠加)1905年爱因斯坦发表的题为《论动体的电动力学》一文中以光速不变原理和狭义相对性原理为基本假设的基础上建立了一种区别于牛顿时空观的新的平直时空理论这就是我们熟知的大名鼎鼎的狭义相对论狭义相对性原理:一切物理定律(除引力外的力学定律、电磁学定律以及其他相互作用的动力学定律)在所有惯性系中均有效;或者说一切物理定律(除引力外)的方程式在洛伦兹变换下保持形式不变不同时间进行的实验给出了同样的物理定律这正是相对性原理的实验基础光速不变原理:光在真空中总是以确定的速度c传播速度的大小同光源的运动状态无关在真空中的各个方向上光信号传播速度(即单向光速)的大小均相同(即光速各向同性);光速同光源的运动状态和观察者所处的惯性系无关这个原理同经典力学不相容有了这个原理才能够准确地定义不同地点的同时性爱因斯坦基于事实的观察着眼于修改运动、时间、空间等基本概念重新导出洛伦兹变换(洛伦兹变换是洛伦兹为了调和经典力学和电磁理论矛盾而提出来的但是存在局限性)并赋予洛伦兹变换崭新的物理内容来解释光速不变爱因斯坦的洛仑兹变换是指纯数学的空间缩短不再是组成量杆的带电粒子距离缩短而且这种空间缩短不具有任何实质性的物理意义在狭义相对论中洛伦兹变换是最基本的关系式狭义相对论的运动学结论和时空性质如同时性的相对性、长度收缩、时间延缓、速度变换公式、相对论多普勒效应等都可以从洛伦兹变换中直接得出根据光速不变原理相对于任何惯性参考系光速都具有相同的数值在光速不变和相对性原理的基础上在狭义相对论中空间和时间并不相互独立而是一个统一的四维时空整体不同惯性参照系之间的变换关系式与洛伦兹变换在数学表达式上是一致的所以说伽利略变换明显成立的公式在物体以接近光速运动时、亦或者是电磁过程不会成立这是相对论效应造成的爱因斯坦的狭义相对论给经典力学和电磁场论都划分了各自适用的领域一旦超过了这个范围那么将不再适用简而言之就是爱因斯坦在以光速不变原理和狭义相对性原理为基本假设的基础上以洛伦兹变换为核心提出了狭义相对论解决了经典力学的危机并且提出了一种全新的时空观由此现代物理学体系的两大支柱便应运而生1916年爱因斯坦创立广义相对论之后便一直专心致志想要完成物理学的大一统就是统一引力、强力、弱力、电磁力这宇宙四大力然而因为时代的关系爱因斯坦最终没有完成这个目标爱因斯坦是从电磁力和引力进行下手到了 50 年代杨振宁虽然也起源于对电磁相互作用的分析但是杨振宁却没有执着于引力和电磁力的统一而是构建了弱相互作用和电磁相互作用的统一理论被称为杨·米尔斯理论1954年初杨振宁和罗伯特·米尔斯将量子电动力学(电磁理论进一步发展而来)的概念推广到非阿贝尔规范群非阿贝尔群在数学和物理中广泛存在又称为为非交换群规范场论原本是是基于对称变换可以局部也可以全局地施行这一思想的一类物理理论但杨振宁和米尔斯却极大地推广了场和荷的含义他们设想了一种更为复杂的荷(当然不能再叫电荷了)和它们所产生的场以解释强相互作用这些荷和场都不是普通的实数能表示的它们是一些矩阵矩阵的乘法是不能交换的这种乘法的不交换性叫非阿贝尔的因此也叫非阿贝尔规范场量子理论里力学变量可以表示成矩阵但这里说的场和荷表示成矩阵不是由于量子化的结果而是在经典物理的意义上它们就是矩阵后来众多科学家在杨·米尔斯理论的基础上不断开拓由此实现了强弱相互作用和电磁相互作用的大一统爱因斯坦后半生苦苦思索的统一场论至死没有实现但以杨振宁的杨·米尔斯理论为基础的规范场论却居然一举统一了宇宙四种基本力的三种规范场论被物理学界公认为基本粒子标准模型在粒子物理学里标准模型是一套描述强力、弱力及电磁力这三种基本力及组成所有物质的基本粒子的理论即使是尚未统一到标准模型中的引力也有可能包括进规范场的理论之中杨·米尔斯理论可以说是20世纪后半叶最伟大的物理成绩之一由杨·米尔斯理论发展的标准模型准确地预言了在世界各地实验室中观察到的事实其应用已经深入在物理学的其他分支中诸如统计物理、凝聚态物理和非线性系统等等可以说从伽利略开始到杨振宁的杨·米尔斯理论为基础的标准模型物理在这 300 年的时间里发生了翻天覆地的变化由宏观到微观由低速到高速等等而在物理学不断发展下社会也在高速变革经典力学催生了工业革命迎来了蒸汽时代而电磁理论又带我们进入了电气化时代而现代物理学体系的建立又让我们迈入了信息时代杨振宁的杨·米尔斯理论也是有缺陷的如此完善不足催生新的物理学体系甚至实现宇宙大一统科学家们正在奋力前行