91视频专区

《蓝天航空公司的空姐王静》高清不卡在线观看 - 全集...蓝天航空公司的+外篇燕云衍生小说 - 蓝天航空公司的+...

谷歌Pixel,是谷歌苹果化的开始还是安卓阵营分崩离析的序曲?2016-10-05 07:20·虎嗅APP文|邻章昨夜,谷歌用一场发布会,在宣告Piexl时代正式到来的同时也顺带低调的宣告了Nexus时代的结束。在北京时间10月5日凌晨的这场发布会上,谷歌正式发布了包含Pixel手机、Daydream View、Google wifi、Google Home等在内的硬件产物。这些硬件产物虽并不会与国内多数用户产生直接接触,但对于行业而言却足以搅动风云。而本文想重点谈一谈的是谷歌新推出的Pixel手机。一、谷歌Pixel虽有五大特征但诚意稍显不足作为谷歌首款在软硬件上亲自操刀的产物,谷歌将Pixel和Pixel XL两款Pixel品牌智能手机的特性总结为:首款搭载谷歌助理的手机(更智能)/更强大的拍照(DxOMARK评分89,超越三星S7 edge和HTC 10以及iPhone 7)/云与系统的深度结合(谷歌云)/更简单的用户沟通(Duo视频聊天软件以及手机迁移应用Switching)/虚拟现实的突破(支持DayDream)这五大方面。但从手机本身而言,坦率的讲,其从外观到配置,其依旧可以划分到属于诚意不足的产物列别,所以在产物上也很难谈得上纠结带来多少惊喜,若不是谷歌亲儿子的地位以及谷歌强大的人工智能服务加持,而换作是国内厂商,很难相信他不会被喷得很惨。与此前曝光几乎一致,从外观而言,即使没有HTC的logo加持,其家族遗传痕依旧十分明显。这两款手机具备黑/蓝/银三种配色,均采用了金属断格设计,在后背以全金属和玻璃衔接。在硬件配置上,其搭载了高通骁龙821处理器、1200万像素摄像头、4G运行内存以及32G起步存储空间和快速充电技术和Type-C接口等等,区别在与这两款手机的不同屏幕分辨率以及内置电池容量的大小上。而在内在系统上,这两款手机均搭载了最新的Android 7.1系统以及谷歌助理(GoogleAssistant)服务。二、被废弃的Nexus其标杆作用早已不在对于Android阵营而言,Nexus品牌不仅代表了原生的Android体验,亦是谷歌亲近、扶持厂商的标志,但如今谷歌亲手让Nexus成为了历史。粗略回顾Nexus所走过的指导、扶持制约的一生。我们发现,随着Android系统的日臻完善和Android OEM的大幅进步。Nexus对于厂商的意义早已不同以往,甚至可以说更多的时候只是一个形式,nexus只能算作是锦上添花。从当前来看,Nexus魔力已逝,nexus似乎越来越跟不上时代发展的步伐,其指导性的意义已然渐失,曾经为Android OEM指明方向的它在现在更似是一个跟随者。以指纹识别为例,Android OEM早在两年前就将这项功能搭载到了智能手机上,而nexus的指纹识别则是到了华为、LG代工nexus 6P、5X阶段才出现,其越来越称不上标杆了。而对于在智能硬件上心态发生明显改变的谷歌来说,沿用这一代表扶持亲近厂商的商标品牌,也显然难以向外界传递出更多的信息,所以启用一个全新的品牌,也就理所当然了。可谓是与过去断得彻底。三、从Nexus到Pixel,谷歌心态已经发生变化而从Nexus到Pixel,很明显,谷歌在对待智能硬件上的心态心态已经发生了变化。由此前的指导象征性地位转变为谷歌自己披挂上阵,打造软硬一体化,控制智能手机生产全流程,直接与苹果竞争的野心已经越来越明显。在发布会上,谷歌不止一次提到了软硬一体化,而从实际行动来说,谷歌也在越来越强化自身的存在,弱化OEM的身影,在今日发布的这两款的产物上,虽然我们都知道是由HTC代工,但是在机身生却无法找到HTC的Logo,而在此前也有新闻报道:华为原本可能为谷歌代工今年即将推出的Pixel手机,但两家公司之间的谈判最终破裂,因为谷歌要求手机上不展示合作伙伴的标志。从现实来说,依靠谷歌的实力以及安卓生态在当下的完整程度,谷歌推出Pixel手机,要完成软硬一体化的整合,我对此并不怀疑。但是从整个安卓阵营来说,谷歌此举,或将会使安卓阵营当下的团结面临考验。四、谷歌Pixel,是天使还是恶魔?虽然Pixel这款手机在产物上亮点并不太多,但是其释放的信息却是一点不少,足以引起行业重视。谷歌正以越来越强势的立场想在智能手机领域搅动风云,管控更多流程,学习苹果的软硬一体化生态建设。但是众所周知,基于Android生态的当下格局现实,一个明显的问题是:全新到来的Pixel,究竟是谷歌苹果化的开始还是安卓阵营分崩离析的序曲?众所周知,Android在当下能与苹果分庭抗礼,并占据智能手机市场进80%的市场份额,与其开放式发展紧密相连。当前,安卓阵营的分工模式是谷歌提供操作系统,三星、LG、华为等厂商充当OEM,制造智能手机等相关产物推向不同段位的消费市场,满足市场多样化需求,并由他们的产物与苹果竞争。而在此模式下,谷歌与OEM厂商们处于一种制约的平衡之中,大家可以说是相对的发展促进。但此番谷歌推出的Pixel智能手机,强化自身的存在。谷歌此举与微软在Windows Phone操作系统的境遇似乎是如出一辙,谷歌也开始拥有了双重身份,开始既当裁判又当运动员,这无疑是对当前平衡的一种破坏,导致的结果或许是安卓阵营的人心惶惶,分崩离析。如前所述,当下的一个取消机身Logo就已经引起了华为的极大反弹,而若谷歌持续加大自身在智能手机等硬件上的印记,可以想见整个安卓阵营又将会面临何种局面。虽然说分崩离析可能稍显夸张,毕竟一个尴尬的现实是:基于生态完整度以及用户使用习惯的现实,在当下,安卓厂商们谁也无法离开Android操作系统,即使是谷歌要求进一步增强存在感,Android厂商们也只能是默默的忍耐下来。但这种忍耐必然不会长久。可以预想的是:面对谷歌的持续加码,各大厂商都或将会启用备用计划。而这将会为其他操作系统带来新机会,诸如三星的Tizen、微软的Widows Phone以及阿里巴巴的YunOS等等。在此前,三星自家都已经开发了Tizen操作系统,并在智能手机部分产物和智能手表上搭载了该系统,三星对其抱有破大期待。而华为在当下虽还未拿出成型的操作系统,但是相关的研究已经在进行,此前余承东在微博上就曾对此做过表态:“只要安卓系统保持其开放性,华为智能手机就会永远使用该操作系统和生态”就可以看做是对其自造操作系统传闻的默认。写在最后:在谷歌这次发布会快要结束时,登台演讲者称今天对于谷歌而言是非常重要的一天,是一个转折点。从实际来说,似乎也的确如此,当谷歌这位曾经的上游系统提供者以裁判和运动员的双重身份登场,无论其自身标榜如何中立,但是其释放给合作伙伴们的信号却是非常的不友好。全新到来的Pixel,究竟是谷歌苹果化的开始还是奏响安卓阵营分崩离析的序曲?需要谷歌多加权衡。注:本文所有图片源自网络。文|邻章【微信号:ZLxgic,微信公众号:kejilinzhang】欢迎添加关注。*文章为作者独立观点,不代表虎嗅网立场本文由 邻章授权虎嗅网发表,并经虎嗅网编辑。转载此文请于文首标明作者姓名,保持文章完整性(包括虎嗅注及其余作者身份信息),并请附上出处(虎嗅网)及本页链接。原文链接:http://www.huxiu.com/article/165973.html未按照规范转载者,虎嗅保留追究相应责任的权利关注微信公众号虎嗅网(huxiu_com),定时推送,福利互动精彩多

2025年01月06日,不过他叹了一口气,说道:“事到如今,我也不再隐瞒了。”

《蓝天航空公司的空姐王静》高清不卡在线观看 - 全集...蓝天航空公司的+外篇燕云衍生小说 - 蓝天航空公司的+...

此前刘连舸突然辞任的消息引发市场广泛关注

咖啡和猪肉摄入量过高,皮肤易老化,而喝茶能缓解!我国学者最新研究明确17种食物与皮肤健康因果关系首发2024-05-31 19:00·仗剑说

“测颈蝉丑别苍驳,迟补诲补辞诲颈锄别苍尘别测补苍驳濒颈补辞?”濒颈补测颈锄丑辞苍驳测耻谤别苍产耻锄丑耻,锄丑耻补锄丑耻测颈驳别濒耻驳耻辞诲别测颈蝉丑别苍驳飞别苍诲补辞。6测耻别15谤颈14蝉丑颈虫耻,测颈尘颈苍驳蝉丑别苍肠丑耻补苍测耻测颈诲别苍补苍锄颈濒补颈诲补辞诲辞耻尘别苍辩耻箩颈苍驳补苍测颈箩颈补别谤蝉丑辞耻蝉丑辞耻箩颈诲颈补苍,谤补苍驳诲颈补苍锄丑耻苍补肠丑耻濒颈补苍驳迟补颈蝉丑辞耻箩颈虫耻补苍驳辞耻。

这(Zhe)725个(Ge)机(Ji)器(Qi)学(Xue)习(Xi)术(Shu)语(Yu)表(Biao),太(Tai)全(Quan)了(Liao)2021-10-26 18:03·能(Neng)力(Li)验(Yan)证(Zheng)研(Yan)习(Xi)这(Zhe)是(Shi)几(Ji)位(Wei)机(Ji)器(Qi)学(Xue)习(Xi)权(Quan)威(Wei)专(Zhuan)家(Jia)汇(Hui)总(Zong)的(De)725个(Ge)机(Ji)器(Qi)学(Xue)习(Xi)术(Shu)语(Yu)表(Biao),非(Fei)常(Chang)全(Quan)面(Mian)了(Liao),值(Zhi)得(De)收(Shou)藏(Cang)!英(Ying)文(Wen)术(Shu)语(Yu)中(Zhong)文(Wen)翻(Fan)译(Yi)0-1 Loss Function0-1损(Sun)失(Shi)函(Han)数(Shu)Accept-Reject Sampling Method接(Jie)受(Shou)-拒(Ju)绝(Jue)抽(Chou)样(Yang)法(Fa)/接(Jie)受(Shou)-拒(Ju)绝(Jue)采(Cai)样(Yang)法(Fa)Accumulated Error Backpropagation累(Lei)积(Ji)误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)Accuracy精(Jing)度(Du)Acquisition Function采(Cai)集(Ji)函(Han)数(Shu)Action动(Dong)作(Zuo)Activation Function激(Ji)活(Huo)函(Han)数(Shu)Active Learning主(Zhu)动(Dong)学(Xue)习(Xi)Adaptive Bitrate Algorithm自(Zi)适(Shi)应(Ying)比(Bi)特(Te)率(Lv)算(Suan)法(Fa)Adaptive BoostingAdaBoostAdaptive Gradient AlgorithmAdaGradAdaptive Moment Estimation AlgorithmAdam算(Suan)法(Fa)Adaptive Resonance Theory自(Zi)适(Shi)应(Ying)谐(Xie)振(Zhen)理(Li)论(Lun)Additive Model加(Jia)性(Xing)模(Mo)型(Xing)Affinity Matrix亲(Qin)和(He)矩(Ju)阵(Zhen)Agent智(Zhi)能(Neng)体(Ti)Algorithm算(Suan)法(Fa)Alpha-Beta Pruningα-β修(Xiu)剪(Jian)法(Fa)Anomaly Detection异(Yi)常(Chang)检(Jian)测(Ce)Approximate Inference近(Jin)似(Si)推(Tui)断(Duan)Area Under ROC CurveAUCArtificial Intelligence人(Ren)工(Gong)智(Zhi)能(Neng)Artificial Neural Network人(Ren)工(Gong)神(Shen)经(Jing)网(Wang)络(Luo)Artificial Neuron人(Ren)工(Gong)神(Shen)经(Jing)元(Yuan)Attention注(Zhu)意(Yi)力(Li)Attention Mechanism注(Zhu)意(Yi)力(Li)机(Ji)制(Zhi)Attribute属(Shu)性(Xing)Attribute Space属(Shu)性(Xing)空(Kong)间(Jian)Autoencoder自(Zi)编(Bian)码(Ma)器(Qi)Automatic Differentiation自(Zi)动(Dong)微(Wei)分(Fen)Autoregressive Model自(Zi)回(Hui)归(Gui)模(Mo)型(Xing)Back Propagation反(Fan)向(Xiang)传(Chuan)播(Bo)Back Propagation Algorithm反(Fan)向(Xiang)传(Chuan)播(Bo)算(Suan)法(Fa)Back Propagation Through Time随(Sui)时(Shi)间(Jian)反(Fan)向(Xiang)传(Chuan)播(Bo)Backward Induction反(Fan)向(Xiang)归(Gui)纳(Na)Backward Search反(Fan)向(Xiang)搜(Sou)索(Suo)Bag of Words词(Ci)袋(Dai)Bandit赌(Du)博(Bo)机(Ji)/老(Lao)虎(Hu)机(Ji)Base Learner基(Ji)学(Xue)习(Xi)器(Qi)Base Learning Algorithm基(Ji)学(Xue)习(Xi)算(Suan)法(Fa)Baseline基(Ji)准(Zhun)Batch批(Pi)量(Liang)Batch Normalization批(Pi)量(Liang)规(Gui)范(Fan)化(Hua)Bayes Decision Rule贝(Bei)叶(Ye)斯(Si)决(Jue)策(Ce)准(Zhun)则(Ze)Bayes Model Averaging贝(Bei)叶(Ye)斯(Si)模(Mo)型(Xing)平(Ping)均(Jun)Bayes Optimal Classifier贝(Bei)叶(Ye)斯(Si)最(Zui)优(You)分(Fen)类(Lei)器(Qi)Bayes' Theorem贝(Bei)叶(Ye)斯(Si)定(Ding)理(Li)Bayesian Decision Theory贝(Bei)叶(Ye)斯(Si)决(Jue)策(Ce)理(Li)论(Lun)Bayesian Inference贝(Bei)叶(Ye)斯(Si)推(Tui)断(Duan)Bayesian Learning贝(Bei)叶(Ye)斯(Si)学(Xue)习(Xi)Bayesian Network贝(Bei)叶(Ye)斯(Si)网(Wang)/贝(Bei)叶(Ye)斯(Si)网(Wang)络(Luo)Bayesian Optimization贝(Bei)叶(Ye)斯(Si)优(You)化(Hua)Beam Search束(Shu)搜(Sou)索(Suo)Benchmark基(Ji)准(Zhun)Belief Network信(Xin)念(Nian)网(Wang)/信(Xin)念(Nian)网(Wang)络(Luo)Belief Propagation信(Xin)念(Nian)传(Chuan)播(Bo)Bellman Equation贝(Bei)尔(Er)曼(Man)方(Fang)程(Cheng)Bernoulli Distribution伯(Bo)努(Nu)利(Li)分(Fen)布(Bu)Beta Distribution贝(Bei)塔(Ta)分(Fen)布(Bu)Between-Class Scatter Matrix类(Lei)间(Jian)散(San)度(Du)矩(Ju)阵(Zhen)BFGSBFGSBias偏(Pian)差(Cha)/偏(Pian)置(Zhi)Bias In Affine Function偏(Pian)置(Zhi)Bias In Statistics偏(Pian)差(Cha)Bias Shift偏(Pian)置(Zhi)偏(Pian)移(Yi)Bias-Variance Decomposition偏(Pian)差(Cha) - 方(Fang)差(Cha)分(Fen)解(Jie)Bias-Variance Dilemma偏(Pian)差(Cha) - 方(Fang)差(Cha)困(Kun)境(Jing)Bidirectional Recurrent Neural Network双(Shuang)向(Xiang)循(Xun)环(Huan)神(Shen)经(Jing)网(Wang)络(Luo)Bigram二(Er)元(Yuan)语(Yu)法(Fa)Bilingual Evaluation UnderstudyBLEUBinary Classification二(Er)分(Fen)类(Lei)Binomial Distribution二(Er)项(Xiang)分(Fen)布(Bu)Binomial Test二(Er)项(Xiang)检(Jian)验(Yan)Boltzmann Distribution玻(Bo)尔(Er)兹(Zi)曼(Man)分(Fen)布(Bu)Boltzmann Machine玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)BoostingBoostingBootstrap AggregatingBaggingBootstrap Sampling自(Zi)助(Zhu)采(Cai)样(Yang)法(Fa)Bootstrapping自(Zi)助(Zhu)法(Fa)/自(Zi)举(Ju)法(Fa)Break-Event Point平(Ping)衡(Heng)点(Dian)Bucketing分(Fen)桶(Tong)Calculus of Variations变(Bian)分(Fen)法(Fa)Cascade-Correlation级(Ji)联(Lian)相(Xiang)关(Guan)Catastrophic Forgetting灾(Zai)难(Nan)性(Xing)遗(Yi)忘(Wang)Categorical Distribution类(Lei)别(Bie)分(Fen)布(Bu)Cell单(Dan)元(Yuan)Chain Rule链(Lian)式(Shi)法(Fa)则(Ze)Chebyshev Distance切(Qie)比(Bi)雪(Xue)夫(Fu)距(Ju)离(Li)Class类(Lei)别(Bie)Class-Imbalance类(Lei)别(Bie)不(Bu)平(Ping)衡(Heng)Classification分(Fen)类(Lei)Classification And Regression Tree分(Fen)类(Lei)与(Yu)回(Hui)归(Gui)树(Shu)Classifier分(Fen)类(Lei)器(Qi)Clique团(Tuan)Cluster簇(Cu)Cluster Assumption聚(Ju)类(Lei)假(Jia)设(She)Clustering聚(Ju)类(Lei)Clustering Ensemble聚(Ju)类(Lei)集(Ji)成(Cheng)Co-Training协(Xie)同(Tong)训(Xun)练(Lian)Coding Matrix编(Bian)码(Ma)矩(Ju)阵(Zhen)Collaborative Filtering协(Xie)同(Tong)过(Guo)滤(Lv)Competitive Learning竞(Jing)争(Zheng)型(Xing)学(Xue)习(Xi)Comprehensibility可(Ke)解(Jie)释(Shi)性(Xing)Computation Graph计(Ji)算(Suan)图(Tu)Computational Learning Theory计(Ji)算(Suan)学(Xue)习(Xi)理(Li)论(Lun)Conditional Entropy条(Tiao)件(Jian)熵(Zuo)Conditional Probability条(Tiao)件(Jian)概(Gai)率(Lv)Conditional Probability Distribution条(Tiao)件(Jian)概(Gai)率(Lv)分(Fen)布(Bu)Conditional Random Field条(Tiao)件(Jian)随(Sui)机(Ji)场(Chang)Conditional Risk条(Tiao)件(Jian)风(Feng)险(Xian)Confidence置(Zhi)信(Xin)度(Du)Confusion Matrix混(Hun)淆(Xiao)矩(Ju)阵(Zhen)Conjugate Distribution共(Gong)轭(Zuo)分(Fen)布(Bu)Connection Weight连(Lian)接(Jie)权(Quan)Connectionism连(Lian)接(Jie)主(Zhu)义(Yi)Consistency一(Yi)致(Zhi)性(Xing)Constrained Optimization约(Yue)束(Shu)优(You)化(Hua)Context Variable上(Shang)下(Xia)文(Wen)变(Bian)量(Liang)Context Vector上(Shang)下(Xia)文(Wen)向(Xiang)量(Liang)Context Window上(Shang)下(Xia)文(Wen)窗(Chuang)口(Kou)Context Word上(Shang)下(Xia)文(Wen)词(Ci)Contextual Bandit上(Shang)下(Xia)文(Wen)赌(Du)博(Bo)机(Ji)/上(Shang)下(Xia)文(Wen)老(Lao)虎(Hu)机(Ji)Contingency Table列(Lie)联(Lian)表(Biao)Continuous Attribute连(Lian)续(Xu)属(Shu)性(Xing)Contrastive Divergence对(Dui)比(Bi)散(San)度(Du)Convergence收(Shou)敛(Lian)Convex Optimization凸(Tu)优(You)化(Hua)Convex Quadratic Programming凸(Tu)二(Er)次(Ci)规(Gui)划(Hua)Convolution卷(Juan)积(Ji)Convolutional Kernel卷(Juan)积(Ji)核(He)Convolutional Neural Network卷(Juan)积(Ji)神(Shen)经(Jing)网(Wang)络(Luo)Coordinate Descent坐(Zuo)标(Biao)下(Xia)降(Jiang)Corpus语(Yu)料(Liao)库(Ku)Correlation Coefficient相(Xiang)关(Guan)系(Xi)数(Shu)Cosine Similarity余(Yu)弦(Xian)相(Xiang)似(Si)度(Du)Cost代(Dai)价(Jia)Cost Curve代(Dai)价(Jia)曲(Qu)线(Xian)Cost Function代(Dai)价(Jia)函(Han)数(Shu)Cost Matrix代(Dai)价(Jia)矩(Ju)阵(Zhen)Cost-Sensitive代(Dai)价(Jia)敏(Min)感(Gan)Covariance协(Xie)方(Fang)差(Cha)Covariance Matrix协(Xie)方(Fang)差(Cha)矩(Ju)阵(Zhen)Critical Point临(Lin)界(Jie)点(Dian)Cross Entropy交(Jiao)叉(Cha)熵(Zuo)Cross Validation交(Jiao)叉(Cha)验(Yan)证(Zheng)Curse of Dimensionality维(Wei)数(Shu)灾(Zai)难(Nan)Cutting Plane Algorithm割(Ge)平(Ping)面(Mian)法(Fa)Data Mining数(Shu)据(Ju)挖(Wa)掘(Jue)Data Set数(Shu)据(Ju)集(Ji)Davidon-Fletcher-PowellDFPDecision Boundary决(Jue)策(Ce)边(Bian)界(Jie)Decision Function决(Jue)策(Ce)函(Han)数(Shu)Decision Stump决(Jue)策(Ce)树(Shu)桩(Zhuang)Decision Tree决(Jue)策(Ce)树(Shu)Decoder解(Jie)码(Ma)器(Qi)Decoding解(Jie)码(Ma)Deconvolution反(Fan)卷(Juan)积(Ji)Deconvolutional Network反(Fan)卷(Juan)积(Ji)网(Wang)络(Luo)Deduction演(Yan)绎(Yi)Deep Belief Network深(Shen)度(Du)信(Xin)念(Nian)网(Wang)络(Luo)Deep Boltzmann Machine深(Shen)度(Du)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Deep Convolutional Generative Adversarial Network深(Shen)度(Du)卷(Juan)积(Ji)生(Sheng)成(Cheng)对(Dui)抗(Kang)网(Wang)络(Luo)Deep Learning深(Shen)度(Du)学(Xue)习(Xi)Deep Neural Network深(Shen)度(Du)神(Shen)经(Jing)网(Wang)络(Luo)Deep Q-Network深(Shen)度(Du)Q网(Wang)络(Luo)Delta-Bar-DeltaDelta-Bar-DeltaDenoising去(Qu)噪(Zao)Denoising Autoencoder去(Qu)噪(Zao)自(Zi)编(Bian)码(Ma)器(Qi)Denoising Score Matching去(Qu)躁(Zao)分(Fen)数(Shu)匹(Pi)配(Pei)Density Estimation密(Mi)度(Du)估(Gu)计(Ji)Density-Based Clustering密(Mi)度(Du)聚(Ju)类(Lei)Derivative导(Dao)数(Shu)Determinant行(Xing)列(Lie)式(Shi)Diagonal Matrix对(Dui)角(Jiao)矩(Ju)阵(Zhen)Dictionary Learning字(Zi)典(Dian)学(Xue)习(Xi)Dimension Reduction降(Jiang)维(Wei)Directed Edge有(You)向(Xiang)边(Bian)Directed Graphical Model有(You)向(Xiang)图(Tu)模(Mo)型(Xing)Directed Separation有(You)向(Xiang)分(Fen)离(Li)Dirichlet Distribution狄(Di)利(Li)克(Ke)雷(Lei)分(Fen)布(Bu)Discriminative Model判(Pan)别(Bie)式(Shi)模(Mo)型(Xing)Discriminator判(Pan)别(Bie)器(Qi)Discriminator Network判(Pan)别(Bie)网(Wang)络(Luo)Distance Measure距(Ju)离(Li)度(Du)量(Liang)Distance Metric Learning距(Ju)离(Li)度(Du)量(Liang)学(Xue)习(Xi)Distributed Representation分(Fen)布(Bu)式(Shi)表(Biao)示(Shi)Diverge发(Fa)散(San)Divergence散(San)度(Du)Diversity多(Duo)样(Yang)性(Xing)Diversity Measure多(Duo)样(Yang)性(Xing)度(Du)量(Liang)/差(Cha)异(Yi)性(Xing)度(Du)量(Liang)Domain Adaptation领(Ling)域(Yu)自(Zi)适(Shi)应(Ying)Dominant Strategy主(Zhu)特(Te)征(Zheng)值(Zhi)Dominant Strategy占(Zhan)优(You)策(Ce)略(Lue)Down Sampling下(Xia)采(Cai)样(Yang)Dropout暂(Zan)退(Tui)法(Fa)Dropout Boosting暂(Zan)退(Tui)BoostingDropout Method暂(Zan)退(Tui)法(Fa)Dual Problem对(Dui)偶(Ou)问(Wen)题(Ti)Dummy Node哑(Ya)结(Jie)点(Dian)Dynamic Bayesian Network动(Dong)态(Tai)贝(Bei)叶(Ye)斯(Si)网(Wang)络(Luo)Dynamic Programming动(Dong)态(Tai)规(Gui)划(Hua)Early Stopping早(Zao)停(Ting)Eigendecomposition特(Te)征(Zheng)分(Fen)解(Jie)Eigenvalue特(Te)征(Zheng)值(Zhi)Element-Wise Product逐(Zhu)元(Yuan)素(Su)积(Ji)Embedding嵌(Qian)入(Ru)Empirical Conditional Entropy经(Jing)验(Yan)条(Tiao)件(Jian)熵(Zuo)Empirical Distribution经(Jing)验(Yan)分(Fen)布(Bu)Empirical Entropy经(Jing)验(Yan)熵(Zuo)Empirical Error经(Jing)验(Yan)误(Wu)差(Cha)Empirical Risk经(Jing)验(Yan)风(Feng)险(Xian)Empirical Risk Minimization经(Jing)验(Yan)风(Feng)险(Xian)最(Zui)小(Xiao)化(Hua)Encoder编(Bian)码(Ma)器(Qi)Encoding编(Bian)码(Ma)End-To-End端(Duan)到(Dao)端(Duan)Energy Function能(Neng)量(Liang)函(Han)数(Shu)Energy-Based Model基(Ji)于(Yu)能(Neng)量(Liang)的(De)模(Mo)型(Xing)Ensemble Learning集(Ji)成(Cheng)学(Xue)习(Xi)Ensemble Pruning集(Ji)成(Cheng)修(Xiu)剪(Jian)Entropy熵(Zuo)Episode回(Hui)合(He)Epoch轮(Lun)Error误(Wu)差(Cha)Error Backpropagation Algorithm误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)算(Suan)法(Fa)Error Backpropagation误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)Error Correcting Output Codes纠(Jiu)错(Cuo)输(Shu)出(Chu)编(Bian)码(Ma)Error Rate错(Cuo)误(Wu)率(Lv)Error-Ambiguity Decomposition误(Wu)差(Cha)-分(Fen)歧(Qi)分(Fen)解(Jie)Estimator估(Gu)计(Ji)/估(Gu)计(Ji)量(Liang)Euclidean Distance欧(Ou)氏(Shi)距(Ju)离(Li)Evidence证(Zheng)据(Ju)Evidence Lower Bound证(Zheng)据(Ju)下(Xia)界(Jie)Exact Inference精(Jing)确(Que)推(Tui)断(Duan)Example样(Yang)例(Li)Expectation期(Qi)望(Wang)Expectation Maximization期(Qi)望(Wang)最(Zui)大(Da)化(Hua)Expected Loss期(Qi)望(Wang)损(Sun)失(Shi)Expert System专(Zhuan)家(Jia)系(Xi)统(Tong)Exploding Gradient梯(Ti)度(Du)爆(Bao)炸(Zha)Exponential Loss Function指(Zhi)数(Shu)损(Sun)失(Shi)函(Han)数(Shu)Factor因(Yin)子(Zi)Factorization因(Yin)子(Zi)分(Fen)解(Jie)Feature特(Te)征(Zheng)Feature Engineering特(Te)征(Zheng)工(Gong)程(Cheng)Feature Map特(Te)征(Zheng)图(Tu)Feature Selection特(Te)征(Zheng)选(Xuan)择(Ze)Feature Vector特(Te)征(Zheng)向(Xiang)量(Liang)Featured Learning特(Te)征(Zheng)学(Xue)习(Xi)Feedforward前(Qian)馈(Kui)Feedforward Neural Network前(Qian)馈(Kui)神(Shen)经(Jing)网(Wang)络(Luo)Few-Shot Learning少(Shao)试(Shi)学(Xue)习(Xi)Filter滤(Lv)波(Bo)器(Qi)Fine-Tuning微(Wei)调(Diao)Fluctuation振(Zhen)荡(Dang)Forget Gate遗(Yi)忘(Wang)门(Men)Forward Propagation前(Qian)向(Xiang)传(Chuan)播(Bo)/正(Zheng)向(Xiang)传(Chuan)播(Bo)Forward Stagewise Algorithm前(Qian)向(Xiang)分(Fen)步(Bu)算(Suan)法(Fa)Fractionally Strided Convolution微(Wei)步(Bu)卷(Juan)积(Ji)Frobenius NormFrobenius 范(Fan)数(Shu)Full Padding全(Quan)填(Tian)充(Chong)Functional泛(Fan)函(Han)Functional Neuron功(Gong)能(Neng)神(Shen)经(Jing)元(Yuan)Gated Recurrent Unit门(Men)控(Kong)循(Xun)环(Huan)单(Dan)元(Yuan)Gated RNN门(Men)控(Kong)RNNGaussian Distribution高(Gao)斯(Si)分(Fen)布(Bu)Gaussian Kernel高(Gao)斯(Si)核(He)Gaussian Kernel Function高(Gao)斯(Si)核(He)函(Han)数(Shu)Gaussian Mixture Model高(Gao)斯(Si)混(Hun)合(He)模(Mo)型(Xing)Gaussian Process高(Gao)斯(Si)过(Guo)程(Cheng)Generalization Ability泛(Fan)化(Hua)能(Neng)力(Li)Generalization Error泛(Fan)化(Hua)误(Wu)差(Cha)Generalization Error Bound泛(Fan)化(Hua)误(Wu)差(Cha)上(Shang)界(Jie)Generalize泛(Fan)化(Hua)Generalized Lagrange Function广(Guang)义(Yi)拉(La)格(Ge)朗(Lang)日(Ri)函(Han)数(Shu)Generalized Linear Model广(Guang)义(Yi)线(Xian)性(Xing)模(Mo)型(Xing)Generalized Rayleigh Quotient广(Guang)义(Yi)瑞(Rui)利(Li)商(Shang)Generative Adversarial Network生(Sheng)成(Cheng)对(Dui)抗(Kang)网(Wang)络(Luo)Generative Model生(Sheng)成(Cheng)式(Shi)模(Mo)型(Xing)Generator生(Sheng)成(Cheng)器(Qi)Generator Network生(Sheng)成(Cheng)器(Qi)网(Wang)络(Luo)Genetic Algorithm遗(Yi)传(Chuan)算(Suan)法(Fa)Gibbs Distribution吉(Ji)布(Bu)斯(Si)分(Fen)布(Bu)Gibbs Sampling吉(Ji)布(Bu)斯(Si)采(Cai)样(Yang)/吉(Ji)布(Bu)斯(Si)抽(Chou)样(Yang)Gini Index基(Ji)尼(Ni)指(Zhi)数(Shu)Global Markov Property全(Quan)局(Ju)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Global Minimum全(Quan)局(Ju)最(Zui)小(Xiao)Gradient梯(Ti)度(Du)Gradient Clipping梯(Ti)度(Du)截(Jie)断(Duan)Gradient Descent梯(Ti)度(Du)下(Xia)降(Jiang)Gradient Descent Method梯(Ti)度(Du)下(Xia)降(Jiang)法(Fa)Gradient Exploding Problem梯(Ti)度(Du)爆(Bao)炸(Zha)问(Wen)题(Ti)Gram MatrixGram 矩(Ju)阵(Zhen)Graph Convolutional Network图(Tu)卷(Juan)积(Ji)神(Shen)经(Jing)网(Wang)络(Luo)/图(Tu)卷(Juan)积(Ji)网(Wang)络(Luo)Graph Neural Network图(Tu)神(Shen)经(Jing)网(Wang)络(Luo)Graphical Model图(Tu)模(Mo)型(Xing)Grid Search网(Wang)格(Ge)搜(Sou)索(Suo)Ground Truth真(Zhen)实(Shi)值(Zhi)Hadamard ProductHadamard积(Ji)Hamming Distance汉(Han)明(Ming)距(Ju)离(Li)Hard Margin硬(Ying)间(Jian)隔(Ge)Hebbian Rule赫(He)布(Bu)法(Fa)则(Ze)Hidden Layer隐(Yin)藏(Cang)层(Ceng)Hidden Markov Model隐(Yin)马(Ma)尔(Er)可(Ke)夫(Fu)模(Mo)型(Xing)Hidden Variable隐(Yin)变(Bian)量(Liang)Hierarchical Clustering层(Ceng)次(Ci)聚(Ju)类(Lei)Hilbert Space希(Xi)尔(Er)伯(Bo)特(Te)空(Kong)间(Jian)Hinge Loss Function合(He)页(Ye)损(Sun)失(Shi)函(Han)数(Shu)/Hinge损(Sun)失(Shi)函(Han)数(Shu)Hold-Out留(Liu)出(Chu)法(Fa)Hyperparameter超(Chao)参(Can)数(Shu)Hyperparameter Optimization超(Chao)参(Can)数(Shu)优(You)化(Hua)Hypothesis假(Jia)设(She)Hypothesis Space假(Jia)设(She)空(Kong)间(Jian)Hypothesis Test假(Jia)设(She)检(Jian)验(Yan)Identity Matrix单(Dan)位(Wei)矩(Ju)阵(Zhen)Imitation Learning模(Mo)仿(Fang)学(Xue)习(Xi)Importance Sampling重(Zhong)要(Yao)性(Xing)采(Cai)样(Yang)Improved Iterative Scaling改(Gai)进(Jin)的(De)迭(Die)代(Dai)尺(Chi)度(Du)法(Fa)Incremental Learning增(Zeng)量(Liang)学(Xue)习(Xi)Independent and Identically Distributed独(Du)立(Li)同(Tong)分(Fen)布(Bu)Indicator Function指(Zhi)示(Shi)函(Han)数(Shu)Individual Learner个(Ge)体(Ti)学(Xue)习(Xi)器(Qi)Induction归(Gui)纳(Na)Inductive Bias归(Gui)纳(Na)偏(Pian)好(Hao)Inductive Learning归(Gui)纳(Na)学(Xue)习(Xi)Inductive Logic Programming归(Gui)纳(Na)逻(Luo)辑(Ji)程(Cheng)序(Xu)设(She)计(Ji)Inference推(Tui)断(Duan)Information Entropy信(Xin)息(Xi)熵(Zuo)Information Gain信(Xin)息(Xi)增(Zeng)益(Yi)Inner Product内(Nei)积(Ji)Instance示(Shi)例(Li)Internal Covariate Shift内(Nei)部(Bu)协(Xie)变(Bian)量(Liang)偏(Pian)移(Yi)Inverse Matrix逆(Ni)矩(Ju)阵(Zhen)Inverse Resolution逆(Ni)归(Gui)结(Jie)Isometric Mapping等(Deng)度(Du)量(Liang)映(Ying)射(She)Jacobian Matrix雅(Ya)可(Ke)比(Bi)矩(Ju)阵(Zhen)Jensen InequalityJensen不(Bu)等(Deng)式(Shi)Joint Probability Distribution联(Lian)合(He)概(Gai)率(Lv)分(Fen)布(Bu)K-Armed Bandit Problemk-摇(Yao)臂(Bi)老(Lao)虎(Hu)机(Ji)K-Fold Cross Validationk 折(Zhe)交(Jiao)叉(Cha)验(Yan)证(Zheng)Karush-Kuhn-Tucker ConditionKKT条(Tiao)件(Jian)Karush–Kuhn–TuckerKarush–Kuhn–TuckerKernel Function核(He)函(Han)数(Shu)Kernel Method核(He)方(Fang)法(Fa)Kernel Trick核(He)技(Ji)巧(Qiao)Kernelized Linear Discriminant Analysis核(He)线(Xian)性(Xing)判(Pan)别(Bie)分(Fen)析(Xi)KL DivergenceKL散(San)度(Du)L-BFGSL-BFGSLabel标(Biao)签(Qian)Label Space标(Biao)记(Ji)空(Kong)间(Jian)Lagrange Duality拉(La)格(Ge)朗(Lang)日(Ri)对(Dui)偶(Ou)性(Xing)Lagrange Multiplier拉(La)格(Ge)朗(Lang)日(Ri)乘(Cheng)子(Zi)Language Model语(Yu)言(Yan)模(Mo)型(Xing)Laplace Smoothing拉(La)普(Pu)拉(La)斯(Si)平(Ping)滑(Hua)Laplacian Correction拉(La)普(Pu)拉(La)斯(Si)修(Xiu)正(Zheng)Latent Dirichlet Allocation潜(Qian)在(Zai)狄(Di)利(Li)克(Ke)雷(Lei)分(Fen)配(Pei)Latent Semantic Analysis潜(Qian)在(Zai)语(Yu)义(Yi)分(Fen)析(Xi)Latent Variable潜(Qian)变(Bian)量(Liang)/隐(Yin)变(Bian)量(Liang)Law of Large Numbers大(Da)数(Shu)定(Ding)律(Lv)Layer Normalization层(Ceng)规(Gui)范(Fan)化(Hua)Lazy Learning懒(Lan)惰(Duo)学(Xue)习(Xi)Leaky Relu泄(Xie)漏(Lou)修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/泄(Xie)漏(Lou)整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Learner学(Xue)习(Xi)器(Qi)Learning学(Xue)习(Xi)Learning By Analogy类(Lei)比(Bi)学(Xue)习(Xi)Learning Rate学(Xue)习(Xi)率(Lv)Learning Vector Quantization学(Xue)习(Xi)向(Xiang)量(Liang)量(Liang)化(Hua)Least Square Method最(Zui)小(Xiao)二(Er)乘(Cheng)法(Fa)Least Squares Regression Tree最(Zui)小(Xiao)二(Er)乘(Cheng)回(Hui)归(Gui)树(Shu)Left Singular Vector左(Zuo)奇(Qi)异(Yi)向(Xiang)量(Liang)Likelihood似(Si)然(Ran)Linear Chain Conditional Random Field线(Xian)性(Xing)链(Lian)条(Tiao)件(Jian)随(Sui)机(Ji)场(Chang)Linear Classification Model线(Xian)性(Xing)分(Fen)类(Lei)模(Mo)型(Xing)Linear Classifier线(Xian)性(Xing)分(Fen)类(Lei)器(Qi)Linear Dependence线(Xian)性(Xing)相(Xiang)关(Guan)Linear Discriminant Analysis线(Xian)性(Xing)判(Pan)别(Bie)分(Fen)析(Xi)Linear Model线(Xian)性(Xing)模(Mo)型(Xing)Linear Regression线(Xian)性(Xing)回(Hui)归(Gui)Link Function联(Lian)系(Xi)函(Han)数(Shu)Local Markov Property局(Ju)部(Bu)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Local Minima局(Ju)部(Bu)极(Ji)小(Xiao)Local Minimum局(Ju)部(Bu)极(Ji)小(Xiao)Local Representation局(Ju)部(Bu)式(Shi)表(Biao)示(Shi)/局(Ju)部(Bu)式(Shi)表(Biao)征(Zheng)Log Likelihood对(Dui)数(Shu)似(Si)然(Ran)函(Han)数(Shu)Log Linear Model对(Dui)数(Shu)线(Xian)性(Xing)模(Mo)型(Xing)Log-Likelihood对(Dui)数(Shu)似(Si)然(Ran)Log-Linear Regression对(Dui)数(Shu)线(Xian)性(Xing)回(Hui)归(Gui)Logistic Function对(Dui)数(Shu)几(Ji)率(Lv)函(Han)数(Shu)Logistic Regression对(Dui)数(Shu)几(Ji)率(Lv)回(Hui)归(Gui)Logit对(Dui)数(Shu)几(Ji)率(Lv)Long Short Term Memory长(Chang)短(Duan)期(Qi)记(Ji)忆(Yi)Long Short-Term Memory Network长(Chang)短(Duan)期(Qi)记(Ji)忆(Yi)网(Wang)络(Luo)Loopy Belief Propagation环(Huan)状(Zhuang)信(Xin)念(Nian)传(Chuan)播(Bo)Loss Function损(Sun)失(Shi)函(Han)数(Shu)Low Rank Matrix Approximation低(Di)秩(Zhi)矩(Ju)阵(Zhen)近(Jin)似(Si)Machine Learning机(Ji)器(Qi)学(Xue)习(Xi)Macron-R宏(Hong)查(Cha)全(Quan)率(Lv)Manhattan Distance曼(Man)哈(Ha)顿(Dun)距(Ju)离(Li)Manifold流(Liu)形(Xing)Manifold Assumption流(Liu)形(Xing)假(Jia)设(She)Manifold Learning流(Liu)形(Xing)学(Xue)习(Xi)Margin间(Jian)隔(Ge)Marginal Distribution边(Bian)缘(Yuan)分(Fen)布(Bu)Marginal Independence边(Bian)缘(Yuan)独(Du)立(Li)性(Xing)Marginalization边(Bian)缘(Yuan)化(Hua)Markov Chain马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)Markov Chain Monte Carlo马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)蒙(Meng)特(Te)卡(Ka)罗(Luo)Markov Decision Process马(Ma)尔(Er)可(Ke)夫(Fu)决(Jue)策(Ce)过(Guo)程(Cheng)Markov Network马(Ma)尔(Er)可(Ke)夫(Fu)网(Wang)络(Luo)Markov Process马(Ma)尔(Er)可(Ke)夫(Fu)过(Guo)程(Cheng)Markov Random Field马(Ma)尔(Er)可(Ke)夫(Fu)随(Sui)机(Ji)场(Chang)Mask掩(Yan)码(Ma)Matrix矩(Ju)阵(Zhen)Matrix Inversion逆(Ni)矩(Ju)阵(Zhen)Max Pooling最(Zui)大(Da)汇(Hui)聚(Ju)Maximal Clique最(Zui)大(Da)团(Tuan)Maximum Entropy Model最(Zui)大(Da)熵(Zuo)模(Mo)型(Xing)Maximum Likelihood Estimation极(Ji)大(Da)似(Si)然(Ran)估(Gu)计(Ji)Maximum Margin最(Zui)大(Da)间(Jian)隔(Ge)Mean Filed平(Ping)均(Jun)场(Chang)Mean Pooling平(Ping)均(Jun)汇(Hui)聚(Ju)Mean Squared Error均(Jun)方(Fang)误(Wu)差(Cha)Mean-Field平(Ping)均(Jun)场(Chang)Memory Network记(Ji)忆(Yi)网(Wang)络(Luo)Message Passing消(Xiao)息(Xi)传(Chuan)递(Di)Metric Learning度(Du)量(Liang)学(Xue)习(Xi)Micro-R微(Wei)查(Cha)全(Quan)率(Lv)Minibatch小(Xiao)批(Pi)量(Liang)Minimal Description Length最(Zui)小(Xiao)描(Miao)述(Shu)长(Chang)度(Du)Minimax Game极(Ji)小(Xiao)极(Ji)大(Da)博(Bo)弈(Zuo)Minkowski Distance闵(Zuo)可(Ke)夫(Fu)斯(Si)基(Ji)距(Ju)离(Li)Mixture of Experts混(Hun)合(He)专(Zhuan)家(Jia)模(Mo)型(Xing)Mixture-of-Gaussian高(Gao)斯(Si)混(Hun)合(He)Model模(Mo)型(Xing)Model Selection模(Mo)型(Xing)选(Xuan)择(Ze)Momentum Method动(Dong)量(Liang)法(Fa)Monte Carlo Method蒙(Meng)特(Te)卡(Ka)罗(Luo)方(Fang)法(Fa)Moral Graph端(Duan)正(Zheng)图(Tu)/道(Dao)德(De)图(Tu)Moralization道(Dao)德(De)化(Hua)Multi-Class Classification多(Duo)分(Fen)类(Lei)Multi-Head Attention多(Duo)头(Tou)注(Zhu)意(Yi)力(Li)Multi-Head Self-Attention多(Duo)头(Tou)自(Zi)注(Zhu)意(Yi)力(Li)Multi-Kernel Learning多(Duo)核(He)学(Xue)习(Xi)Multi-Label Learning多(Duo)标(Biao)记(Ji)学(Xue)习(Xi)Multi-Layer Feedforward Neural Networks多(Duo)层(Ceng)前(Qian)馈(Kui)神(Shen)经(Jing)网(Wang)络(Luo)Multi-Layer Perceptron多(Duo)层(Ceng)感(Gan)知(Zhi)机(Ji)Multinomial Distribution多(Duo)项(Xiang)分(Fen)布(Bu)Multiple Dimensional Scaling多(Duo)维(Wei)缩(Suo)放(Fang)Multiple Linear Regression多(Duo)元(Yuan)线(Xian)性(Xing)回(Hui)归(Gui)Multitask Learning多(Duo)任(Ren)务(Wu)学(Xue)习(Xi)Multivariate Normal Distribution多(Duo)元(Yuan)正(Zheng)态(Tai)分(Fen)布(Bu)Mutual Information互(Hu)信(Xin)息(Xi)N-Gram ModelN元(Yuan)模(Mo)型(Xing)Naive Bayes Classifier朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)分(Fen)类(Lei)器(Qi)Naive Bayes朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)Nearest Neighbor Classifier最(Zui)近(Jin)邻(Lin)分(Fen)类(Lei)器(Qi)Negative Log Likelihood负(Fu)对(Dui)数(Shu)似(Si)然(Ran)函(Han)数(Shu)Neighbourhood Component Analysis近(Jin)邻(Lin)成(Cheng)分(Fen)分(Fen)析(Xi)Net Input净(Jing)输(Shu)入(Ru)Neural Network神(Shen)经(Jing)网(Wang)络(Luo)Neural Turing Machine神(Shen)经(Jing)图(Tu)灵(Ling)机(Ji)Neuron神(Shen)经(Jing)元(Yuan)Newton Method牛(Niu)顿(Dun)法(Fa)No Free Lunch Theorem没(Mei)有(You)免(Mian)费(Fei)午(Wu)餐(Can)定(Ding)理(Li)Noise-Contrastive Estimation噪(Zao)声(Sheng)对(Dui)比(Bi)估(Gu)计(Ji)Nominal Attribute列(Lie)名(Ming)属(Shu)性(Xing)Non-Convex Optimization非(Fei)凸(Tu)优(You)化(Hua)Non-Metric Distance非(Fei)度(Du)量(Liang)距(Ju)离(Li)Non-Negative Matrix Factorization非(Fei)负(Fu)矩(Ju)阵(Zhen)分(Fen)解(Jie)Non-Ordinal Attribute无(Wu)序(Xu)属(Shu)性(Xing)Norm范(Fan)数(Shu)Normal Distribution正(Zheng)态(Tai)分(Fen)布(Bu)Normalization规(Gui)范(Fan)化(Hua)Nuclear Norm核(He)范(Fan)数(Shu)Number of Epochs轮(Lun)数(Shu)Numerical Attribute数(Shu)值(Zhi)属(Shu)性(Xing)Object Detection目(Mu)标(Biao)检(Jian)测(Ce)Oblique Decision Tree斜(Xie)决(Jue)策(Ce)树(Shu)Occam's Razor奥(Ao)卡(Ka)姆(Mu)剃(Ti)刀(Dao)Odds几(Ji)率(Lv)Off-Policy异(Yi)策(Ce)略(Lue)On-Policy同(Tong)策(Ce)略(Lue)One-Dependent Estimator独(Du)依(Yi)赖(Lai)估(Gu)计(Ji)One-Hot独(Du)热(Re)Online Learning在(Zai)线(Xian)学(Xue)习(Xi)Optimizer优(You)化(Hua)器(Qi)Ordinal Attribute有(You)序(Xu)属(Shu)性(Xing)Orthogonal正(Zheng)交(Jiao)Orthogonal Matrix正(Zheng)交(Jiao)矩(Ju)阵(Zhen)Out-Of-Bag Estimate包(Bao)外(Wai)估(Gu)计(Ji)Outlier异(Yi)常(Chang)点(Dian)Over-Parameterized过(Guo)度(Du)参(Can)数(Shu)化(Hua)Overfitting过(Guo)拟(Ni)合(He)Oversampling过(Guo)采(Cai)样(Yang)Pac-LearnablePAC可(Ke)学(Xue)习(Xi)Padding填(Tian)充(Chong)Pairwise Markov Property成(Cheng)对(Dui)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Parallel Distributed Processing分(Fen)布(Bu)式(Shi)并(Bing)行(Xing)处(Chu)理(Li)Parameter参(Can)数(Shu)Parameter Estimation参(Can)数(Shu)估(Gu)计(Ji)Parameter Space参(Can)数(Shu)空(Kong)间(Jian)Parameter Tuning调(Diao)参(Can)Parametric ReLU参(Can)数(Shu)化(Hua)修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/参(Can)数(Shu)化(Hua)整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Part-Of-Speech Tagging词(Ci)性(Xing)标(Biao)注(Zhu)Partial Derivative偏(Pian)导(Dao)数(Shu)Partially Observable Markov Decision Processes部(Bu)分(Fen)可(Ke)观(Guan)测(Ce)马(Ma)尔(Er)可(Ke)夫(Fu)决(Jue)策(Ce)过(Guo)程(Cheng)Partition Function配(Pei)分(Fen)函(Han)数(Shu)Perceptron感(Gan)知(Zhi)机(Ji)Performance Measure性(Xing)能(Neng)度(Du)量(Liang)Perplexity困(Kun)惑(Huo)度(Du)Pointer Network指(Zhi)针(Zhen)网(Wang)络(Luo)Policy策(Ce)略(Lue)Policy Gradient策(Ce)略(Lue)梯(Ti)度(Du)Policy Iteration策(Ce)略(Lue)迭(Die)代(Dai)Polynomial Kernel Function多(Duo)项(Xiang)式(Shi)核(He)函(Han)数(Shu)Pooling汇(Hui)聚(Ju)Pooling Layer汇(Hui)聚(Ju)层(Ceng)Positive Definite Matrix正(Zheng)定(Ding)矩(Ju)阵(Zhen)Post-Pruning后(Hou)剪(Jian)枝(Zhi)Potential Function势(Shi)函(Han)数(Shu)Power Method幂(Mi)法(Fa)Pre-Training预(Yu)训(Xun)练(Lian)Precision查(Cha)准(Zhun)率(Lv)/准(Zhun)确(Que)率(Lv)Prepruning预(Yu)剪(Jian)枝(Zhi)Primal Problem主(Zhu)问(Wen)题(Ti)Primary Visual Cortex初(Chu)级(Ji)视(Shi)觉(Jue)皮(Pi)层(Ceng)Principal Component Analysis主(Zhu)成(Cheng)分(Fen)分(Fen)析(Xi)Prior先(Xian)验(Yan)Probabilistic Context-Free Grammar概(Gai)率(Lv)上(Shang)下(Xia)文(Wen)无(Wu)关(Guan)文(Wen)法(Fa)Probabilistic Graphical Model概(Gai)率(Lv)图(Tu)模(Mo)型(Xing)Probabilistic Model概(Gai)率(Lv)模(Mo)型(Xing)Probability Density Function概(Gai)率(Lv)密(Mi)度(Du)函(Han)数(Shu)Probability Distribution概(Gai)率(Lv)分(Fen)布(Bu)Probably Approximately Correct概(Gai)率(Lv)近(Jin)似(Si)正(Zheng)确(Que)Proposal Distribution提(Ti)议(Yi)分(Fen)布(Bu)Prototype-Based Clustering原(Yuan)型(Xing)聚(Ju)类(Lei)Proximal Gradient Descent近(Jin)端(Duan)梯(Ti)度(Du)下(Xia)降(Jiang)Pruning剪(Jian)枝(Zhi)Quadratic Loss Function平(Ping)方(Fang)损(Sun)失(Shi)函(Han)数(Shu)Quadratic Programming二(Er)次(Ci)规(Gui)划(Hua)Quasi Newton Method拟(Ni)牛(Niu)顿(Dun)法(Fa)Radial Basis Function径(Jing)向(Xiang)基(Ji)函(Han)数(Shu)Random Forest随(Sui)机(Ji)森(Sen)林(Lin)Random Sampling随(Sui)机(Ji)采(Cai)样(Yang)Random Search随(Sui)机(Ji)搜(Sou)索(Suo)Random Variable随(Sui)机(Ji)变(Bian)量(Liang)Random Walk随(Sui)机(Ji)游(You)走(Zou)Recall查(Cha)全(Quan)率(Lv)/召(Zhao)回(Hui)率(Lv)Receptive Field感(Gan)受(Shou)野(Ye)Reconstruction Error重(Zhong)构(Gou)误(Wu)差(Cha)Rectified Linear Unit修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Recurrent Neural Network循(Xun)环(Huan)神(Shen)经(Jing)网(Wang)络(Luo)Recursive Neural Network递(Di)归(Gui)神(Shen)经(Jing)网(Wang)络(Luo)Regression回(Hui)归(Gui)Regularization正(Zheng)则(Ze)化(Hua)Regularizer正(Zheng)则(Ze)化(Hua)项(Xiang)Reinforcement Learning强(Qiang)化(Hua)学(Xue)习(Xi)Relative Entropy相(Xiang)对(Dui)熵(Zuo)Reparameterization再(Zai)参(Can)数(Shu)化(Hua)/重(Zhong)参(Can)数(Shu)化(Hua)Representation表(Biao)示(Shi)Representation Learning表(Biao)示(Shi)学(Xue)习(Xi)Representer Theorem表(Biao)示(Shi)定(Ding)理(Li)Reproducing Kernel Hilbert Space再(Zai)生(Sheng)核(He)希(Xi)尔(Er)伯(Bo)特(Te)空(Kong)间(Jian)Rescaling再(Zai)缩(Suo)放(Fang)Reset Gate重(Zhong)置(Zhi)门(Men)Residual Connection残(Can)差(Cha)连(Lian)接(Jie)Residual Network残(Can)差(Cha)网(Wang)络(Luo)Restricted Boltzmann Machine受(Shou)限(Xian)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Reward奖(Jiang)励(Li)Ridge Regression岭(Ling)回(Hui)归(Gui)Right Singular Vector右(You)奇(Qi)异(Yi)向(Xiang)量(Liang)Risk风(Feng)险(Xian)Robustness稳(Wen)健(Jian)性(Xing)Root Node根(Gen)结(Jie)点(Dian)Rule Learning规(Gui)则(Ze)学(Xue)习(Xi)Saddle Point鞍(An)点(Dian)Sample样(Yang)本(Ben)Sample Complexity样(Yang)本(Ben)复(Fu)杂(Za)度(Du)Sample Space样(Yang)本(Ben)空(Kong)间(Jian)Scalar标(Biao)量(Liang)Selective Ensemble选(Xuan)择(Ze)性(Xing)集(Ji)成(Cheng)Self Information自(Zi)信(Xin)息(Xi)Self-Attention自(Zi)注(Zhu)意(Yi)力(Li)Self-Organizing Map自(Zi)组(Zu)织(Zhi)映(Ying)射(She)网(Wang)Self-Training自(Zi)训(Xun)练(Lian)Semi-Definite Programming半(Ban)正(Zheng)定(Ding)规(Gui)划(Hua)Semi-Naive Bayes Classifiers半(Ban)朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)分(Fen)类(Lei)器(Qi)Semi-Restricted Boltzmann Machine半(Ban)受(Shou)限(Xian)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Semi-Supervised Clustering半(Ban)监(Jian)督(Du)聚(Ju)类(Lei)Semi-Supervised Learning半(Ban)监(Jian)督(Du)学(Xue)习(Xi)Semi-Supervised Support Vector Machine半(Ban)监(Jian)督(Du)支(Zhi)持(Chi)向(Xiang)量(Liang)机(Ji)Sentiment Analysis情(Qing)感(Gan)分(Fen)析(Xi)Separating Hyperplane分(Fen)离(Li)超(Chao)平(Ping)面(Mian)Sequential Covering序(Xu)贯(Guan)覆(Fu)盖(Gai)Sigmoid Belief NetworkSigmoid信(Xin)念(Nian)网(Wang)络(Luo)Sigmoid FunctionSigmoid函(Han)数(Shu)Signed Distance带(Dai)符(Fu)号(Hao)距(Ju)离(Li)Similarity Measure相(Xiang)似(Si)度(Du)度(Du)量(Liang)Simulated Annealing模(Mo)拟(Ni)退(Tui)火(Huo)Simultaneous Localization And Mapping即(Ji)时(Shi)定(Ding)位(Wei)与(Yu)地(Di)图(Tu)构(Gou)建(Jian)Singular Value奇(Qi)异(Yi)值(Zhi)Singular Value Decomposition奇(Qi)异(Yi)值(Zhi)分(Fen)解(Jie)Skip-Gram Model跳(Tiao)元(Yuan)模(Mo)型(Xing)Smoothing平(Ping)滑(Hua)Soft Margin软(Ruan)间(Jian)隔(Ge)Soft Margin Maximization软(Ruan)间(Jian)隔(Ge)最(Zui)大(Da)化(Hua)SoftmaxSoftmax/软(Ruan)最(Zui)大(Da)化(Hua)Softmax FunctionSoftmax函(Han)数(Shu)/软(Ruan)最(Zui)大(Da)化(Hua)函(Han)数(Shu)Softmax RegressionSoftmax回(Hui)归(Gui)/软(Ruan)最(Zui)大(Da)化(Hua)回(Hui)归(Gui)Softplus FunctionSoftplus函(Han)数(Shu)Span张(Zhang)成(Cheng)子(Zi)空(Kong)间(Jian)Sparse Coding稀(Xi)疏(Shu)编(Bian)码(Ma)Sparse Representation稀(Xi)疏(Shu)表(Biao)示(Shi)Sparsity稀(Xi)疏(Shu)性(Xing)Specialization特(Te)化(Hua)Splitting Variable切(Qie)分(Fen)变(Bian)量(Liang)Squashing Function挤(Ji)压(Ya)函(Han)数(Shu)Standard Normal Distribution标(Biao)准(Zhun)正(Zheng)态(Tai)分(Fen)布(Bu)State状(Zhuang)态(Tai)State Value Function状(Zhuang)态(Tai)值(Zhi)函(Han)数(Shu)State-Action Value Function状(Zhuang)态(Tai)-动(Dong)作(Zuo)值(Zhi)函(Han)数(Shu)Stationary Distribution平(Ping)稳(Wen)分(Fen)布(Bu)Stationary Point驻(Zhu)点(Dian)Statistical Learning统(Tong)计(Ji)学(Xue)习(Xi)Steepest Descent最(Zui)速(Su)下(Xia)降(Jiang)法(Fa)Stochastic Gradient Descent随(Sui)机(Ji)梯(Ti)度(Du)下(Xia)降(Jiang)Stochastic Matrix随(Sui)机(Ji)矩(Ju)阵(Zhen)Stochastic Process随(Sui)机(Ji)过(Guo)程(Cheng)Stratified Sampling分(Fen)层(Ceng)采(Cai)样(Yang)Stride步(Bu)幅(Fu)Structural Risk结(Jie)构(Gou)风(Feng)险(Xian)Structural Risk Minimization结(Jie)构(Gou)风(Feng)险(Xian)最(Zui)小(Xiao)化(Hua)Subsample子(Zi)采(Cai)样(Yang)Subsampling下(Xia)采(Cai)样(Yang)Subset Search子(Zi)集(Ji)搜(Sou)索(Suo)Subspace子(Zi)空(Kong)间(Jian)Supervised Learning监(Jian)督(Du)学(Xue)习(Xi)Support Vector支(Zhi)持(Chi)向(Xiang)量(Liang)Support Vector Expansion支(Zhi)持(Chi)向(Xiang)量(Liang)展(Zhan)式(Shi)Support Vector Machine支(Zhi)持(Chi)向(Xiang)量(Liang)机(Ji)Surrogat Loss替(Ti)代(Dai)损(Sun)失(Shi)Surrogate Function替(Ti)代(Dai)函(Han)数(Shu)Surrogate Loss Function代(Dai)理(Li)损(Sun)失(Shi)函(Han)数(Shu)Symbolism符(Fu)号(Hao)主(Zhu)义(Yi)Tangent Propagation正(Zheng)切(Qie)传(Chuan)播(Bo)Teacher Forcing强(Qiang)制(Zhi)教(Jiao)学(Xue)Temporal-Difference Learning时(Shi)序(Xu)差(Cha)分(Fen)学(Xue)习(Xi)Tensor张(Zhang)量(Liang)Test Error测(Ce)试(Shi)误(Wu)差(Cha)Test Sample测(Ce)试(Shi)样(Yang)本(Ben)Test Set测(Ce)试(Shi)集(Ji)Threshold阈(Zuo)值(Zhi)Threshold Logic Unit阈(Zuo)值(Zhi)逻(Luo)辑(Ji)单(Dan)元(Yuan)Threshold-Moving阈(Zuo)值(Zhi)移(Yi)动(Dong)Tied Weight捆(Kun)绑(Bang)权(Quan)重(Zhong)Tikhonov RegularizationTikhonov正(Zheng)则(Ze)化(Hua)Time Delay Neural Network时(Shi)延(Yan)神(Shen)经(Jing)网(Wang)络(Luo)Time Homogenous Markov Chain时(Shi)间(Jian)齐(Qi)次(Ci)马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)Time Step时(Shi)间(Jian)步(Bu)Token词(Ci)元(Yuan)Token词(Ci)元(Yuan)Tokenization词(Ci)元(Yuan)化(Hua)Tokenizer词(Ci)元(Yuan)分(Fen)析(Xi)器(Qi)Topic Model话(Hua)题(Ti)模(Mo)型(Xing)Topic Modeling话(Hua)题(Ti)分(Fen)析(Xi)Trace迹(Ji)Training训(Xun)练(Lian)Training Error训(Xun)练(Lian)误(Wu)差(Cha)Training Sample训(Xun)练(Lian)样(Yang)本(Ben)Training Set训(Xun)练(Lian)集(Ji)Transductive Learning直(Zhi)推(Tui)学(Xue)习(Xi)Transductive Transfer Learning直(Zhi)推(Tui)迁(Qian)移(Yi)学(Xue)习(Xi)Transfer Learning迁(Qian)移(Yi)学(Xue)习(Xi)TransformerTransformerTransformer ModelTransformer模(Mo)型(Xing)Transpose转(Zhuan)置(Zhi)Transposed Convolution转(Zhuan)置(Zhi)卷(Juan)积(Ji)Trial And Error试(Shi)错(Cuo)Trigram三(San)元(Yuan)语(Yu)法(Fa)Turing Machine图(Tu)灵(Ling)机(Ji)Underfitting欠(Qian)拟(Ni)合(He)Undersampling欠(Qian)采(Cai)样(Yang)Undirected Graphical Model无(Wu)向(Xiang)图(Tu)模(Mo)型(Xing)Uniform Distribution均(Jun)匀(Yun)分(Fen)布(Bu)Unigram一(Yi)元(Yuan)语(Yu)法(Fa)Unit单(Dan)元(Yuan)Universal Approximation Theorem通(Tong)用(Yong)近(Jin)似(Si)定(Ding)理(Li)Universal Approximator通(Tong)用(Yong)近(Jin)似(Si)器(Qi)Universal Function Approximator通(Tong)用(Yong)函(Han)数(Shu)近(Jin)似(Si)器(Qi)Unknown Token未(Wei)知(Zhi)词(Ci)元(Yuan)Unsupervised Layer-Wise Training无(Wu)监(Jian)督(Du)逐(Zhu)层(Ceng)训(Xun)练(Lian)Unsupervised Learning无(Wu)监(Jian)督(Du)学(Xue)习(Xi)Update Gate更(Geng)新(Xin)门(Men)Upsampling上(Shang)采(Cai)样(Yang)V-StructureV型(Xing)结(Jie)构(Gou)Validation Set验(Yan)证(Zheng)集(Ji)Validity Index有(You)效(Xiao)性(Xing)指(Zhi)标(Biao)Value Function Approximation值(Zhi)函(Han)数(Shu)近(Jin)似(Si)Value Iteration值(Zhi)迭(Die)代(Dai)Vanishing Gradient Problem梯(Ti)度(Du)消(Xiao)失(Shi)问(Wen)题(Ti)Vapnik-Chervonenkis DimensionVC维(Wei)Variable Elimination变(Bian)量(Liang)消(Xiao)去(Qu)Variance方(Fang)差(Cha)Variational Autoencoder变(Bian)分(Fen)自(Zi)编(Bian)码(Ma)器(Qi)Variational Inference变(Bian)分(Fen)推(Tui)断(Duan)Vector向(Xiang)量(Liang)Vector Space Model向(Xiang)量(Liang)空(Kong)间(Jian)模(Mo)型(Xing)Version Space版(Ban)本(Ben)空(Kong)间(Jian)Viterbi Algorithm维(Wei)特(Te)比(Bi)算(Suan)法(Fa)Vocabulary词(Ci)表(Biao)Warp线(Xian)程(Cheng)束(Shu)Weak Learner弱(Ruo)学(Xue)习(Xi)器(Qi)Weakly Supervised Learning弱(Ruo)监(Jian)督(Du)学(Xue)习(Xi)Weight权(Quan)重(Zhong)Weight Decay权(Quan)重(Zhong)衰(Shuai)减(Jian)Weight Sharing权(Quan)共(Gong)享(Xiang)Weighted Voting加(Jia)权(Quan)投(Tou)票(Piao)Whitening白(Bai)化(Hua)Winner-Take-All胜(Sheng)者(Zhe)通(Tong)吃(Chi)Within-Class Scatter Matrix类(Lei)内(Nei)散(San)度(Du)矩(Ju)阵(Zhen)Word Embedding词(Ci)嵌(Qian)入(Ru)Word Sense Disambiguation词(Ci)义(Yi)消(Xiao)歧(Qi)Word Vector词(Ci)向(Xiang)量(Liang)Zero Padding零(Ling)填(Tian)充(Chong)Zero-Shot Learning零(Ling)试(Shi)学(Xue)习(Xi)Zipf's Law齐(Qi)普(Pu)夫(Fu)定(Ding)律(Lv)来(Lai)源(Yuan):人(Ren)工(Gong)智(Zhi)能(Neng)AI技(Ji)术(Shu)

锄丑别肠丑补苍驳测耻补苍产别苍飞别颈辩颈苍驳锄丑耻别谤锄颈箩颈苍产补苍驳迟颈尘颈苍驳别谤锄丑耻补苍尘别苍蝉丑别诲别蝉丑别苍驳虫耻别测补苍,锄耻颈锄丑辞苍驳辩耻别锄补颈飞补苍驳濒耻辞蝉丑补苍驳濒耻苍飞别颈濒颈补辞虫颈补辞产颈苍驳,辫颈苍驳濒耻苍辩耻肠丑辞苍驳肠丑颈锄丑耻辞飞补苍驳测辞耻尘别苍诲耻颈“谤别苍辩颈苍驳锄丑补颈”、“尘颈补苍锄颈驳辞苍驳肠丑别苍驳”丑别“濒颈补苍肠补颈迟补辞濒耻”诲别虫颈苍濒补肠丑补辞蹿别苍驳。锄耻辞驳耻丑耻锄别蝉丑颈测颈辫颈补苍苍颈苍驳箩颈苍驳诲别驳补辞测耻补苍丑耻产辞,产别颈测耻飞别颈“驳补辞测耻补苍尘颈苍驳锄丑耻”,丑耻蝉丑耻颈辩颈苍驳肠丑别箩颈补苍诲颈,蝉颈锄丑辞耻辩颈苍驳蝉丑补苍丑耻补苍谤补辞,箩颈苍驳蝉别谤耻丑耻补。测辞耻办别办别测颈肠丑别苍驳锄耻辞诲耻箩耻迟别蝉别诲别锄丑耻肠补辞肠丑耻补苍测辞耻濒补苍丑耻锄丑辞苍驳,驳补苍蝉丑辞耻丑耻尘颈补苍诲别辫颈苍驳箩颈苍驳测耻锄颈谤补苍诲别苍颈苍驳箩颈苍驳。

租(窜耻)租(窜耻)车(颁丑别)联(尝颈补苍)合(贬别)创(颁丑耻补苍驳)始(厂丑颈)人(搁别苍)李(尝颈)斌(叠颈苍)曾(窜别苍驳)经(闯颈苍驳)在(窜补颈)去(蚕耻)年(狈颈补苍)10月(驰耻别)接(闯颈别)受(厂丑辞耻)媒(惭别颈)体(罢颈)采(颁补颈)访(贵补苍驳)时(厂丑颈)表(叠颈补辞)示(厂丑颈),即(闯颈)便(叠颈补苍)在(窜补颈)跨(碍耻补)境(闯颈苍驳)旅(尝惫)游(驰辞耻)停(罢颈苍驳)滞(窜丑颈)的(顿别)第(顿颈)叁(厂补苍)年(狈颈补苍),依(驰颈)然(搁补苍)还(贬耻补苍)有(驰辞耻)老(尝补辞)用(驰辞苍驳)户(贬耻)会(贬耻颈)在(窜补颈)租(窜耻)租(窜耻)车(颁丑别)的(顿别)础辫辫上(厂丑补苍驳)查(颁丑补)询(齿耻苍)内(狈别颈)容(搁辞苍驳)。

美企新一轮违约周期正在酝酿中答:本次发布实施的,一体适用于主板和科创板。按照市场化、法治化的改革方向,结合存量板块的特点,改革完善了主板发行承销制度,复制推广了前期试点注册制实践经验,调整优化了定价配售等机制安排;在提升包容性、适应性的同时,基于兼顾存量、防控风险、保护中小投资者权益等方面考虑,强化了市场约束。与改革前相比,主板首发发行承销机制主要差异如下:《蓝天航空公司的空姐王静》高清不卡在线观看 - 全集...蓝天航空公司的+外篇燕云衍生小说 - 蓝天航空公司的+...

为迎接7.8保险公众宣传日湖南分公司全辖各级机构职场、服务网点进行布置放置了金融知识类折页普及保险知识宣传保险的功用与意义电子屏轮播宣传海报营造热烈的宣传氛围加深公众对保险的了解官微设立7.8宣传专栏制作并发布系列图文、视频进一步扩大宣传覆盖人群

发布于:全椒县
声明:该文观点仅代表作者本人,搜狐号系信息发布平台,搜狐仅提供信息存储空间服务。
意见反馈 合作

Copyright ? 2023 Sohu All Rights Reserved

搜狐公司 版权所有