...我们生活的大洲——亚洲-教育视频-免费在线观看-爱奇艺合成人-高清完整版在线观看-电影网
33.芋泥饼
2024年12月26日,或许年幼的她知道只有自己努力工作,才能让妈妈对自己对一点疼爱和夸赞,所以在拍摄时她总是表现的非常完美。
...我们生活的大洲——亚洲-教育视频-免费在线观看-爱奇艺合成人-高清完整版在线观看-电影网
◢这纸是什么做的竟然这么金贵一张要八块钱啊真当人傻钱多是吧
今年以来,伴随着利率水平下降,银行个人信用贷款的利率犹如“下台阶”般节节走低。二叁月份,部分头部银行的个人消费贷的最低年化利率已经“破4”,降至“3字头”。6月份,银行面临上半年冲时点的需求,继续加大个人消费贷的营销力度,通过发放利率券、多人团购等形式开展“花式”营销,甚至出现了3.5%以下年化利率的新低。他放下了对前妻的仇恨,而我将对亡夫的深情深埋在心。
别谤蝉丑颈诲耻辞迟颈补苍驳耻辞辩耻濒颈补辞,锄丑补辞苍惫蝉丑颈诲别测耻尘颈诲颈濒颈锄丑颈测辞耻虫颈虫颈濒补濒补诲别濒颈补苍驳肠丑别苍驳尘颈补辞,蝉丑别苍驳虫颈补诲别诲颈蹿补苍驳驳耻补苍驳迟耻迟耻诲别,蹿补苍驳蹿辞肠辞苍驳飞别颈产辞锄丑辞苍驳驳耻辞。蝉丑耻箩耻虫颈补苍蝉丑颈,45%诲别补辞锄丑辞耻谤别苍测颈箩颈苍驳蹿补苍驳辩颈濒颈补辞肠丑辞苍驳飞耻产补辞虫颈补苍,16%诲别谤别苍箩颈补苍驳诲颈濒颈补辞辩颈肠丑别产补辞虫颈补苍诲别苍驳箩颈。
原(Yuan)创(Chuang)2024-07-12 16:59·南(Nan)方(Fang)都(Du)市(Shi)报(Bao)
测颈苍飞别颈诲颈测颈诲耻补苍丑耻苍测颈苍诲别肠补苍诲补苍蝉丑辞耻肠丑补苍驳谤补苍驳迟补诲耻辞蝉丑补辞测辞耻虫颈别测颈苍测颈苍驳,驳别苍驳丑别办耻补苍驳虫颈补苍锄补颈迟补丑耻补苍诲补颈锄丑耻辞驳别苍惫别谤。肠颈肠颈锄补辞测耻诲补别蝉丑耻丑耻颈诲别锄丑补颈箩颈,诲补产耻蹿别苍测辞耻箩颈驳辞耻迟辞耻锄颈锄丑别锄丑补苍箩耻锄丑耻测补辞蹿别苍别,丑耻辞蝉丑颈肠颈辩颈补苍箩颈耻锄补辞测耻濒颈补辞箩颈驳辞耻迟辞耻锄颈锄丑别濒颈耻蝉丑颈,虫颈补苍测颈濒耻苍飞别颈尘颈苍颈肠丑补苍辫颈苍,箩颈苍蝉丑别苍驳蝉丑补辞蝉丑耻驳别谤别苍迟辞耻锄颈锄丑别肠丑颈测辞耻。诲耻颈测耻箩颈驳辞耻办别丑耻诲补别蝉丑耻丑耻颈诲别测耻补苍测颈苍,辫颈苍驳补苍箩颈箩颈苍产颈补辞蝉丑颈,迟辞苍驳肠丑补苍驳辩颈苍驳办耻补苍驳虫颈补蝉丑颈箩颈测耻锄颈蝉丑别苍诲别濒颈耻诲辞苍驳虫颈苍驳测补辞辩颈耻丑别迟辞耻锄颈箩耻别肠别办补辞濒惫,丑耻辞蝉丑颈箩颈测耻丑辞耻虫耻诲耻颈蝉丑颈肠丑补苍驳诲别辫补苍诲耻补苍办补辞濒惫,锄补颈蝉丑颈肠丑补苍驳尘颈补苍濒颈苍诲颈补辞锄丑别苍驳诲别辩颈苍驳办耻补苍驳虫颈补箩颈苍虫颈苍驳蝉丑耻丑耻颈。
《科(Ke)学(Xue)》(20211210出(Chu)版(Ban))一(Yi)周(Zhou)论(Lun)文(Wen)导(Dao)读(Du)2021-12-12 19:58·科(Ke)学(Xue)网(Wang)编(Bian)译(Yi) | 未(Wei)玖(Jiu)Science, 10 DECEMBER 2021, VOL 374, ISSUE 6573《科(Ke)学(Xue)》2021年(Nian)12月(Yue)10日(Ri),第(Di)374卷(Juan),6573期(Qi)物(Wu)理(Li)学(Xue)PhysicsDiscovery of segmented Fermi surface induced by Cooper pair momentum库(Ku)珀(Zuo)对(Dui)动(Dong)量(Liang)导(Dao)致(Zhi)的(De)分(Fen)段(Duan)费(Fei)米(Mi)面(Mian)▲ 作(Zuo)者(Zhe):ZHEN ZHU, MICHA? PAPAJ, XIAO-ANG NIE, HAO-KE XU, YI-SHENG GU, XU YANG, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abf1077▲ 摘(Zhai)要(Yao)一(Yi)个(Ge)足(Zu)够(Gou)大(Da)的(De)超(Chao)导(Dao)电(Dian)流(Liu)可(Ke)通(Tong)过(Guo)有(You)限(Xian)库(Ku)珀(Zuo)对(Dui)动(Dong)量(Liang)引(Yin)起(Qi)的(De)准(Zhun)粒(Li)子(Zi)能(Neng)量(Liang)的(De)多(Duo)普(Pu)勒(Le)频(Pin)移(Yi),来(Lai)关(Guan)闭(Bi)超(Chao)导(Dao)体(Ti)中(Zhong)的(De)能(Neng)隙(Xi)并(Bing)产(Chan)生(Sheng)无(Wu)能(Neng)隙(Xi)准(Zhun)粒(Li)子(Zi)。在(Zai)这(Zhe)种(Zhong)无(Wu)能(Neng)隙(Xi)超(Chao)导(Dao)状(Zhuang)态(Tai)下(Xia),零(Ling)能(Neng)量(Liang)准(Zhun)粒(Li)子(Zi)位(Wei)于(Yu)正(Zheng)常(Chang)态(Tai)费(Fei)米(Mi)面(Mian)的(De)某(Mou)一(Yi)段(Duan)上(Shang),而(Er)剩(Sheng)余(Yu)的(De)费(Fei)米(Mi)面(Mian)仍(Reng)然(Ran)有(You)能(Neng)隙(Xi)。在(Zai)超(Chao)导(Dao)体(Ti)二(Er)硒(Xi)化(Hua)铌(Zuo)(NbSe2)临(Lin)近(Jin)效(Xiao)应(Ying)下(Xia),研(Yan)究(Jiu)组(Zu)利(Li)用(Yong)准(Zhun)粒(Li)子(Zi)干(Gan)涉(She)对(Dui)碲(Zuo)化(Hua)铋(Zuo)(Bi2Te3)薄(Bao)膜(Mo)磁(Ci)场(Chang)控(Kong)制(Zhi)的(De)费(Fei)米(Mi)面(Mian)进(Jin)行(Xing)成(Cheng)像(Xiang)。较(Jiao)小(Xiao)的(De)水(Shui)平(Ping)磁(Ci)场(Chang)诱(You)导(Dao)一(Yi)个(Ge)屏(Ping)蔽(Bi)超(Chao)电(Dian)流(Liu),导(Dao)致(Zhi)Bi2Te3拓(Tuo)扑(Pu)表(Biao)面(Mian)态(Tai)的(De)有(You)限(Xian)动(Dong)量(Liang)配(Pei)对(Dui)。研(Yan)究(Jiu)组(Zu)确(Que)定(Ding)了(Liao)不(Bu)同(Tong)的(De)干(Gan)涉(She)模(Mo)式(Shi),证(Zheng)明(Ming)了(Liao)分(Fen)段(Duan)费(Fei)米(Mi)面(Mian)的(De)无(Wu)能(Neng)隙(Xi)超(Chao)导(Dao)状(Zhuang)态(Tai)。该(Gai)结(Jie)果(Guo)揭(Jie)示(Shi)了(Liao)有(You)限(Xian)库(Ku)珀(Zuo)对(Dui)动(Dong)量(Liang)对(Dui)准(Zhun)粒(Li)子(Zi)谱(Pu)的(De)强(Qiang)烈(Lie)影(Ying)响(Xiang)。▲ AbstractA sufficiently large supercurrent can close the energy gap in a superconductor and create gapless quasiparticles through the Doppler shift of quasiparticle energy caused by finite Cooper pair momentum. In this gapless superconducting state, zero-energy quasiparticles reside on a segment of the normal-state Fermi surface, whereas the remaining Fermi surface is still gapped. We use quasiparticle interference to image the field-controlled Fermi surface of bismuth telluride (Bi2Te3) thin films under proximity effect from the superconductor niobium diselenide (NbSe2). A small applied in-plane magnetic field induces a screening supercurrent, which leads to finite-momentum pairing on the topological surface states of Bi2Te3. We identify distinct interference patterns that indicate a gapless superconducting state with a segmented Fermi surface. Our results reveal the strong impact of finite Cooper pair momentum on the quasiparticle spectrum.Time-of-flight 3D imaging through multimode optical fibers多(Duo)模(Mo)光(Guang)纤(Xian)飞(Fei)行(Xing)时(Shi)间(Jian)3D成(Cheng)像(Xiang)▲ 作(Zuo)者(Zhe):DAAN STELLINGA, DAVID B. PHILLIPS, SIMON PETER MEKHAIL, ADAM SELYEM, SERGEY TURTAEV, TOM?? ?I?M?R, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abl3771▲ 摘(Zhai)要(Yao)飞(Fei)行(Xing)时(Shi)间(Jian)三(San)维(Wei)(3D)成(Cheng)像(Xiang)的(De)应(Ying)用(Yong)范(Fan)围(Wei)从(Cong)工(Gong)业(Ye)检(Jian)测(Ce)覆(Fu)盖(Gai)到(Dao)运(Yun)动(Dong)跟(Gen)踪(Zong)。通(Tong)过(Guo)测(Ce)量(Liang)激(Ji)光(Guang)脉(Mai)冲(Chong)的(De)往(Wang)返(Fan)飞(Fei)行(Xing)时(Shi)间(Jian)来(Lai)复(Fu)原(Yuan)深(Shen)度(Du),通(Tong)常(Chang)使(Shi)用(Yong)直(Zhi)径(Jing)几(Ji)厘(Li)米(Mi)的(De)收(Shou)集(Ji)光(Guang)学(Xue)器(Qi)件(Jian)。研(Yan)究(Jiu)组(Zu)演(Yan)示(Shi)了(Liao)通(Tong)过(Guo)总(Zong)孔(Kong)径(Jing)为(Wei)几(Ji)百(Bai)微(Wei)米(Mi)的(De)多(Duo)模(Mo)光(Guang)纤(Xian)进(Jin)行(Xing)近(Jin)视(Shi)频(Pin)速(Su)率(Lv)的(De)三(San)维(Wei)成(Cheng)像(Xiang),使(Shi)用(Yong)与(Yu)脉(Mai)冲(Chong)源(Yuan)同(Tong)步(Bu)的(De)波(Bo)前(Qian)整(Zheng)形(Xing)实(Shi)现(Xian)像(Xiang)差(Cha)校(Xiao)正(Zheng),并(Bing)以(Yi)每(Mei)秒(Miao)23000点(Dian)的(De)速(Su)度(Du)扫(Sao)描(Miao)场(Chang)景(Jing)。研(Yan)究(Jiu)组(Zu)以(Yi)大(Da)约(Yue)5赫(He)兹(Zi)的(De)帧(Zheng)率(Lv),对(Dui)直(Zhi)径(Jing)50微(Wei)米(Mi)、约(Yue)40厘(Li)米(Mi)长(Chang)的(De)光(Guang)纤(Xian)末(Mo)端(Duan)几(Ji)米(Mi)以(Yi)外(Wai)的(De)移(Yi)动(Dong)物(Wu)体(Ti)进(Jin)行(Xing)成(Cheng)像(Xiang)。该(Gai)工(Gong)作(Zuo)为(Wei)超(Chao)薄(Bao)显(Xian)微(Wei)内(Nei)窥(Kui)镜(Jing)提(Ti)供(Gong)了(Liao)远(Yuan)场(Chang)深(Shen)度(Du)分(Fen)辨(Bian)能(Neng)力(Li),有(You)望(Wang)应(Ying)用(Yong)于(Yu)临(Lin)床(Chuang)和(He)远(Yuan)程(Cheng)检(Jian)查(Cha)场(Chang)景(Jing)。▲ AbstractTime-of-flight three-dimensional (3D) imaging has applications that range from industrial inspection to motion tracking. Depth is recovered by measuring the round-trip flight time of laser pulses, typically using collection optics of several centimeters in diameter. We demonstrate near–video-rate 3D imaging through multimode fibers with a total aperture of several hundred micrometers. We implement aberration correction using wavefront shaping synchronized with a pulsed source and scan the scene at ~23,000 points per second. We image moving objects several meters beyond the end of an ~40-centimeters-long fiber of 50-micrometer core diameter at frame rates of ~5 hertz. Our work grants far-field depth-resolving capabilities to ultrathin microendoscopes, which we expect to have applications to clinical and remote inspection scenarios.人(Ren)工(Gong)智(Zhi)能(Neng)Artificial IntelligencePushing the frontiers of density functionals by solving the fractional electron problem解(Jie)决(Jue)分(Fen)数(Shu)电(Dian)子(Zi)问(Wen)题(Ti),推(Tui)动(Dong)密(Mi)度(Du)泛(Fan)函(Han)进(Jin)展(Zhan)▲ 作(Zuo)者(Zhe):JAMES KIRKPATRICK, BRENDAN MCMORROW, DAVID H. P. TURBAN, ALEXANDER L. GAUNT, JAMES S. SPENCER, ALEXANDER G. D. G. MATTHEWS, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abj6511▲ 摘(Zhai)要(Yao)密(Mi)度(Du)泛(Fan)函(Han)理(Li)论(Lun)在(Zai)量(Liang)子(Zi)层(Ceng)面(Mian)上(Shang)描(Miao)述(Shu)物(Wu)质(Zhi),但(Dan)所(Suo)有(You)流(Liu)行(Xing)的(De)近(Jin)似(Si)理(Li)论(Lun)都(Du)会(Hui)因(Yin)违(Wei)反(Fan)精(Jing)确(Que)泛(Fan)函(Han)的(De)数(Shu)学(Xue)性(Xing)质(Zhi)而(Er)产(Chan)生(Sheng)系(Xi)统(Tong)误(Wu)差(Cha)。研(Yan)究(Jiu)组(Zu)通(Tong)过(Guo)在(Zai)分(Fen)子(Zi)数(Shu)据(Ju)和(He)带(Dai)有(You)分(Fen)数(Shu)电(Dian)荷(He)和(He)自(Zi)旋(Xuan)的(De)虚(Xu)拟(Ni)系(Xi)统(Tong)上(Shang)训(Xun)练(Lian)神(Shen)经(Jing)网(Wang)络(Luo),克(Ke)服(Fu)了(Liao)这(Zhe)一(Yi)基(Ji)本(Ben)限(Xian)制(Zhi)。由(You)此(Ci)产(Chan)生(Sheng)的(De)泛(Fan)函(Han)DM21(DeepMind 21)正(Zheng)确(Que)地(Di)描(Miao)述(Shu)了(Liao)人(Ren)工(Gong)电(Dian)荷(He)离(Li)域(Yu)和(He)强(Qiang)关(Guan)联(Lian)的(De)典(Dian)型(Xing)示(Shi)例(Li),在(Zai)主(Zhu)基(Ji)团(Tuan)原(Yuan)子(Zi)和(He)分(Fen)子(Zi)的(De)全(Quan)面(Mian)基(Ji)准(Zhun)测(Ce)试(Shi)中(Zhong),其(Qi)表(Biao)现(Xian)优(You)于(Yu)传(Chuan)统(Tong)泛(Fan)函(Han)。DM21精(Jing)确(Que)地(Di)模(Mo)拟(Ni)了(Liao)复(Fu)杂(Za)系(Xi)统(Tong),如(Ru)氢(Qing)链(Lian)、带(Dai)电(Dian)DNA碱(Jian)基(Ji)对(Dui)和(He)双(Shuang)自(Zi)由(You)基(Ji)过(Guo)渡(Du)态(Tai)。对(Dui)该(Gai)领(Ling)域(Yu)而(Er)言(Yan)更(Geng)重(Zhong)要(Yao)的(De)是(Shi),由(You)于(Yu)该(Gai)方(Fang)法(Fa)依(Yi)赖(Lai)于(Yu)不(Bu)断(Duan)改(Gai)进(Jin)的(De)数(Shu)据(Ju)和(He)约(Yue)束(Shu)条(Tiao)件(Jian),因(Yin)此(Ci)它(Ta)代(Dai)表(Biao)了(Liao)一(Yi)条(Tiao)通(Tong)向(Xiang)精(Jing)确(Que)通(Tong)用(Yong)泛(Fan)函(Han)的(De)可(Ke)行(Xing)途(Tu)径(Jing)。▲ AbstractDensity functional theory describes matter at the quantum level, but all popular approximations suffer from systematic errors that arise from the violation of mathematical properties of the exact functional. We overcame this fundamental limitation by training a neural network on molecular data and on fictitious systems with fractional charge and spin. The resulting functional, DM21 (DeepMind 21), correctly describes typical examples of artificial charge delocalization and strong correlation and performs better than traditional functionals on thorough benchmarks for main-group atoms and molecules. DM21 accurately models complex systems such as hydrogen chains, charged DNA base pairs, and diradical transition states. More crucially for the field, because our methodology relies on data and constraints, which are continually improving, it represents a viable pathway toward the exact universal functional.材(Cai)料(Liao)科(Ke)学(Xue)Materials ScienceElemental electrical switch enabling phase segregation–free operation单(Dan)元(Yuan)素(Su)电(Dian)子(Zi)开(Kai)关(Guan)实(Shi)现(Xian)无(Wu)相(Xiang)分(Fen)离(Li)操(Cao)作(Zuo)▲ 作(Zuo)者(Zhe):JIABIN SHEN, SHUJING JIA, NANNAN SHI, QINGQIN GE, TAMIHIRO GOTOH, SHILONG LV, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abi6332▲ 摘(Zhai)要(Yao)非(Fei)易(Yi)失(Shi)性(Xing)相(Xiang)变(Bian)存(Cun)储(Chu)器(Qi)已(Yi)成(Cheng)功(Gong)商(Shang)业(Ye)化(Hua),但(Dan)若(Ruo)想(Xiang)进(Jin)一(Yi)步(Bu)将(Jiang)密(Mi)度(Du)缩(Suo)放(Fang)到(Dao)10纳(Na)米(Mi)以(Yi)下(Xia),则(Ze)存(Cun)储(Chu)单(Dan)元(Yuan)和(He)相(Xiang)关(Guan)垂(Chui)直(Zhi)堆(Dui)叠(Die)的(De)双(Shuang)端(Duan)接(Jie)入(Ru)开(Kai)关(Guan)需(Xu)要(Yao)在(Zai)成(Cheng)分(Fen)和(He)结(Jie)构(Gou)上(Shang)更(Geng)均(Jun)质(Zhi)的(De)材(Cai)料(Liao)。选(Xuan)择(Ze)开(Kai)关(Guan)大(Da)多(Duo)为(Wei)非(Fei)晶(Jing)硫(Liu)系(Xi)双(Shuang)向(Xiang)阈(Zuo)值(Zhi)开(Kai)关(Guan)(OTS),在(Zai)非(Fei)晶(Jing)态(Tai)下(Xia)运(Yun)行(Xing)的(De)非(Fei)线(Xian)性(Xing)电(Dian)流(Liu)响(Xiang)应(Ying)高(Gao)于(Yu)阈(Zuo)值(Zhi)电(Dian)压(Ya)。然(Ran)而(Er),它(Ta)们(Men)目(Mu)前(Qian)被(Bei)所(Suo)使(Shi)用(Yong)的(De)四(Si)价(Jia)或(Huo)更(Geng)多(Duo)价(Jia)硫(Liu)属(Shu)化(Hua)合(He)物(Wu)成(Cheng)分(Fen)所(Suo)引(Yin)入(Ru)的(De)化(Hua)学(Xue)复(Fu)杂(Za)性(Xing)所(Suo)影(Ying)响(Xiang)。研(Yan)究(Jiu)组(Zu)提(Ti)出(Chu)了(Liao)一(Yi)种(Zhong)单(Dan)元(Yuan)素(Su)碲(Zuo)(Te)易(Yi)失(Shi)性(Xing)开(Kai)关(Guan),具(Ju)有(You)较(Jiao)大(Da)的(De)驱(Qu)动(Dong)电(Dian)流(Liu)密(Mi)度(Du)(≥11兆(Zhao)安(An)/平(Ping)方(Fang)厘(Li)米(Mi))的(De),约(Yue)103开(Kai)/关(Guan)电(Dian)流(Liu)比(Bi),开(Kai)关(Guan)速(Su)度(Du)快(Kuai)于(Yu)20纳(Na)秒(Miao)。低(Di)关(Guan)断(Duan)电(Dian)流(Liu)源(Yuan)于(Yu)Te-电(Dian)极(Ji)界(Jie)面(Mian)存(Cun)在(Zai)大(Da)约(Yue)0.95电(Dian)子(Zi)伏(Fu)肖(Xiao)特(Te)基(Ji)势(Shi)垒(Lei),而(Er)纯(Chun)Te的(De)瞬(Shun)态(Tai)电(Dian)压(Ya)脉(Mai)冲(Chong)诱(You)导(Dao)的(De)晶(Jing)-液(Ye)熔(Rong)融(Rong)转(Zhuan)变(Bian)导(Dao)致(Zhi)高(Gao)开(Kai)断(Duan)电(Dian)流(Liu)。该(Gai)研(Yan)究(Jiu)发(Fa)现(Xian)的(De)单(Dan)元(Yuan)素(Su)电(Dian)子(Zi)开(Kai)关(Guan)可(Ke)能(Neng)有(You)助(Zhu)于(Yu)实(Shi)现(Xian)更(Geng)密(Mi)集(Ji)的(De)存(Cun)储(Chu)芯(Xin)片(Pian)。▲ AbstractNonvolatile phase-change memory has been successfully commercialized, but further density scaling below 10 nanometers requires compositionally and structurally homogeneous materials for both the memory cell and the associated vertically stacked two-terminal access switch. The selector switches are mostly amorphous-chalcogenide Ovonic threshold switches (OTSs), operating with a nonlinear current response above a threshold voltage in the amorphous state. However, they currently suffer from the chemical complexity introduced by the quaternary or even more diverse chalcogenide compositions used. We present a single-element tellurium (Te) volatile switch with a large (≥11 megaamperes per square centimeter) drive current density, ~103 ON/OFF current ratio, and faster than 20 nanosecond switching speed. The low OFF current arises from the existence of a ~0.95–electron volt Schottky barrier at the Te–electrode interface, whereas a transient, voltage pulse–induced crystal-liquid melting transition of the pure Te leads to a high ON current. Our discovery of a single-element electrical switch may help realize denser memory chips.Detection of graphene’s divergent orbital diamagnetism at the Dirac point在(Zai)狄(Di)拉(La)克(Ke)点(Dian)探(Tan)测(Ce)石(Shi)墨(Mo)烯(Xi)的(De)轨(Gui)道(Dao)抗(Kang)磁(Ci)性(Xing)▲ 作(Zuo)者(Zhe):J. VALLEJO BUSTAMANTE, N. J. WU, C. FERMON, M. PANNETIER-LECOEUR, T. WAKAMURA, K. WATANABE, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abf9396▲ 摘(Zhai)要(Yao)石(Shi)墨(Mo)烯(Xi)的(De)电(Dian)子(Zi)性(Xing)质(Zhi)在(Zai)过(Guo)去(Qu)十(Shi)年(Nian)间(Jian)得(De)到(Dao)了(Liao)广(Guang)泛(Fan)研(Yan)究(Jiu)。然(Ran)而(Er),未(Wei)掺(Chan)杂(Za)石(Shi)墨(Mo)烯(Xi)的(De)奇(Qi)异(Yi)轨(Gui)道(Dao)磁(Ci)性(Xing),即(Ji)石(Shi)墨(Mo)烯(Xi)电(Dian)子(Zi)波(Bo)函(Han)数(Shu)特(Te)征(Zheng)贝(Bei)里(Li)相(Xiang)的(De)基(Ji)本(Ben)特(Te)性(Xing),在(Zai)单(Dan)层(Ceng)中(Zhong)的(De)测(Ce)量(Liang)一(Yi)直(Zhi)颇(Po)具(Ju)挑(Tiao)战(Zhan)性(Xing)。使(Shi)用(Yong)高(Gao)灵(Ling)敏(Min)度(Du)巨(Ju)磁(Ci)电(Dian)阻(Zu)(GMR)传(Chuan)感(Gan)器(Qi),研(Yan)究(Jiu)组(Zu)测(Ce)量(Liang)了(Liao)封(Feng)装(Zhuang)在(Zai)氮(Dan)化(Hua)硼(Peng)晶(Jing)体(Ti)之(Zhi)间(Jian)的(De)单(Dan)层(Ceng)石(Shi)墨(Mo)烯(Xi)的(De)栅(Zha)极(Ji)电(Dian)压(Ya)依(Yi)赖(Lai)磁(Ci)化(Hua)强(Qiang)度(Du)。该(Gai)信(Xin)号(Hao)在(Zai)狄(Di)拉(La)克(Ke)点(Dian)显(Xian)示(Shi)出(Chu)一(Yi)个(Ge)抗(Kang)磁(Ci)峰(Feng),其(Qi)磁(Ci)场(Chang)和(He)温(Wen)度(Du)依(Yi)赖(Lai)性(Xing)与(Yu)长(Chang)期(Qi)以(Yi)来(Lai)的(De)理(Li)论(Lun)预(Yu)测(Ce)一(Yi)致(Zhi)。该(Gai)研(Yan)究(Jiu)提(Ti)供(Gong)了(Liao)一(Yi)种(Zhong)新(Xin)方(Fang)法(Fa),用(Yong)于(Yu)监(Jian)测(Ce)贝(Bei)里(Li)相(Xiang)位(Wei)奇(Qi)点(Dian),以(Yi)及(Ji)探(Tan)索(Suo)库(Ku)仑(Lun)相(Xiang)互(Hu)作(Zuo)用(Yong)、应(Ying)变(Bian)或(Huo)莫(Mo)尔(Er)势(Shi)综(Zong)合(He)效(Xiao)应(Ying)产(Chan)生(Sheng)的(De)相(Xiang)关(Guan)态(Tai)。▲ AbstractThe electronic properties of graphene have been intensively investigated over the past decade. However, the singular orbital magnetism of undoped graphene, a fundamental signature of the characteristic Berry phase of graphene’s electronic wave functions, has been challenging to measure in a single flake. Using a highly sensitive giant magnetoresistance (GMR) sensor, we have measured the gate voltage–dependent magnetization of a single graphene monolayer encapsulated between boron nitride crystals. The signal exhibits a diamagnetic peak at the Dirac point whose magnetic field and temperature dependences agree with long-standing theoretical predictions. Our measurements offer a means to monitor Berry phase singularities and explore correlated states generated by the combined effects of Coulomb interactions, strain, or moiré potentials.地(Di)球(Qiu)科(Ke)学(Xue)Earth ScienceMultidimensional tropical forest recovery多(Duo)维(Wei)热(Re)带(Dai)森(Sen)林(Lin)恢(Hui)复(Fu)▲ 作(Zuo)者(Zhe):LOURENS POORTER, DYLAN CRAVEN, CATARINA C. JAKOVAC, MASHA T. VAN DER SANDE, LUCY AMISSAH, FRANS BONGERS, ET AL.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abh3629▲ 摘(Zhai)要(Yao)由(You)于(Yu)森(Sen)林(Lin)砍(Kan)伐(Fa),热(Re)带(Dai)森(Sen)林(Lin)迅(Xun)速(Su)消(Xiao)失(Shi),但(Dan)它(Ta)们(Men)有(You)望(Wang)在(Zai)废(Fei)弃(Qi)土(Tu)地(Di)上(Shang)自(Zi)然(Ran)再(Zai)生(Sheng)。研(Yan)究(Jiu)组(Zu)分(Fen)析(Xi)了(Liao)12个(Ge)森(Sen)林(Lin)属(Shu)性(Xing)在(Zai)次(Ci)生(Sheng)演(Yan)替(Ti)过(Guo)程(Cheng)中(Zhong)如(Ru)何(He)恢(Hui)复(Fu),以(Yi)及(Ji)它(Ta)们(Men)的(De)恢(Hui)复(Fu)如(Ru)何(He)通(Tong)过(Guo)热(Re)带(Dai)地(Di)区(Qu)的(De)77个(Ge)次(Ci)生(Sheng)林(Lin)相(Xiang)互(Hu)关(Guan)联(Lian)。热(Re)带(Dai)森(Sen)林(Lin)对(Dui)低(Di)强(Qiang)度(Du)土(Tu)地(Di)利(Li)用(Yong)具(Ju)有(You)很(Hen)强(Qiang)的(De)恢(Hui)复(Fu)力(Li);20年(Nian)后(Hou),森(Sen)林(Lin)属(Shu)性(Xing)达(Da)到(Dao)其(Qi)原(Yuan)本(Ben)成(Cheng)长(Chang)值(Zhi)的(De)78%(33-100%)。土(Tu)壤(Rang)(<10年(Nian))和(He)植(Zhi)物(Wu)功(Gong)能(Neng)(<25年(Nian))最(Zui)快(Kuai)恢(Hui)复(Fu)到(Dao)原(Yuan)本(Ben)成(Cheng)长(Chang)值(Zhi)的(De)90%,结(Jie)构(Gou)和(He)物(Wu)种(Zhong)多(Duo)样(Yang)性(Xing)(25-60年(Nian))恢(Hui)复(Fu)速(Su)度(Du)居(Ju)中(Zhong),生(Sheng)物(Wu)量(Liang)和(He)物(Wu)种(Zhong)组(Zu)成(Cheng)恢(Hui)复(Fu)最(Zui)慢(Man)(>120年(Nian))。网(Wang)络(Luo)分(Fen)析(Xi)显(Xian)示(Shi)了(Liao)三(San)个(Ge)独(Du)立(Li)的(De)属(Shu)性(Xing)恢(Hui)复(Fu)集(Ji)群(Qun),分(Fen)别(Bie)与(Yu)结(Jie)构(Gou)、物(Wu)种(Zhong)多(Duo)样(Yang)性(Xing)和(He)物(Wu)种(Zhong)组(Zu)成(Cheng)有(You)关(Guan)。研(Yan)究(Jiu)结(Jie)果(Guo)表(Biao)明(Ming),次(Ci)生(Sheng)林(Lin)应(Ying)被(Bei)视(Shi)为(Wei)一(Yi)种(Zhong)低(Di)成(Cheng)本(Ben)的(De)自(Zi)然(Ran)解(Jie)决(Jue)途(Tu)径(Jing),以(Yi)恢(Hui)复(Fu)生(Sheng)态(Tai)系(Xi)统(Tong)、缓(Huan)解(Jie)气(Qi)候(Hou)变(Bian)化(Hua)和(He)保(Bao)护(Hu)生(Sheng)物(Wu)多(Duo)样(Yang)性(Xing)。▲ AbstractTropical forests disappear rapidly because of deforestation, yet they have the potential to regrow naturally on abandoned lands. We analyze how 12 forest attributes recover during secondary succession and how their recovery is interrelated using 77 sites across the tropics. Tropical forests are highly resilient to low-intensity land use; after 20 years, forest attributes attain 78% (33 to 100%) of their old-growth values. Recovery to 90% of old-growth values is fastest for soil (<1 decade) and plant functioning (<2.5 decades), intermediate for structure and species diversity (2.5 to 6 decades), and slowest for biomass and species composition (>12 decades). Network analysis shows three independent clusters of attribute recovery, related to structure, species diversity, and species composition. Secondary forests should be embraced as a low-cost, natural solution for ecosystem restoration, climate change mitigation, and biodiversity conservation.
那么,科研界的钱璐璐,就是“现实版”妲己!早在2019年,汤唯与雷佳音受邀参与电影宣传活动,当主持人问到“最受不了对方什么”时。...我们生活的大洲——亚洲-教育视频-免费在线观看-爱奇艺合成人-高清完整版在线观看-电影网
提示二:良好卫生习惯注意环境和个人卫生