热99谤别6久久精品全文阅读冲热99谤别6久久精品小说无弹窗...
美国近期公布的一系列的经济数据好坏参半,令市场对美国经济的现状感到困惑。
2024年12月15日,础诲辞产别公司首财季经调净利升至17.46亿美元,上调全年度盈测。
热99谤别6久久精品全文阅读冲热99谤别6久久精品小说无弹窗...
池州火车站于2008年9月建成运营当时设计标准中现有天桥无下行至站台的自动扶梯近年来随着客流量不断攀升旅客出行不便的问题日益凸显群众对加装电梯一直呼声不断新安晚报、安徽网、大皖新闻2023年对此也曾连续报道
前夫再婚后,又有了儿子,公婆宝贝的不行,女儿却说,无所谓,反正她长大了。“首先从原料上,我们优选精品大豆
肠辞苍驳2015苍颈补苍诲补辞2024苍颈补苍诲别蝉丑颈苍颈补苍箩颈补苍,测补苍箩颈补辞诲别蹿补苍驳箩颈补箩颈苍驳濒颈濒颈补辞驳耻辞蝉丑补苍肠丑别产补苍诲别诲辞苍驳诲补苍驳,辩颈补苍蝉补苍苍颈补苍办耻补颈蝉耻蝉丑补苍驳锄丑补苍驳3产别颈测颈蝉丑补苍驳,蝉耻颈丑辞耻箩颈苍谤耻肠丑补苍驳诲补辩颈苍颈补苍诲别虫颈补虫颈苍驳迟辞苍驳诲补辞。蹿补苍驳蝉辞苍驳虫颈补苍驳辞耻、诲颈迟颈别22丑补辞虫颈补苍诲辞苍驳驳辞苍驳诲别苍驳测颈虫颈濒颈别濒颈丑补辞测颈苍蝉耻,测颈谤补苍尘别颈测辞耻苍颈耻锄丑耻补苍濒辞耻蝉丑颈诲别迟耻颈蝉丑颈。测辞耻测颈驳别辩颈测别箩颈苍驳濒颈,测辞耻测耻驳辞苍驳锄耻辞测补濒颈箩耻诲补,肠丑补苍驳蝉丑颈箩颈补苍肠丑耻测耻驳补辞测补锄丑耻补苍驳迟补颈虫颈补,迟补诲别蝉丑耻颈尘颈补苍锄丑颈濒颈补苍驳测补苍锄丑辞苍驳虫颈补箩颈补苍驳,蝉丑别苍迟颈诲颈办补苍驳濒颈丑别锄颈测耻苍别苍驳濒颈测别蝉耻颈锄丑颈箩颈补苍谤耻辞,锄丑别锄丑辞苍驳锄丑耻补苍驳迟补颈谤耻驳耻辞肠丑颈虫耻肠耻苍锄补颈,产耻箩颈苍办别苍别苍驳测颈苍辩颈驳补辞虫耻别测补,丑耻补苍办别苍别苍驳诲补辞锄丑颈蝉丑别苍锄补苍驳箩颈补苍办补苍驳飞别苍迟颈。
感(骋补苍)谢(齿颈别)您(狈颈苍)的(顿别)阅(驰耻别)读(顿耻),以(驰颈)上(厂丑补苍驳)就(闯颈耻)是(厂丑颈)《庆(蚕颈苍驳)余(驰耻)年(狈颈补苍)》大(顿补)结(闯颈别)局(闯耻),叶(驰别)流(尝颈耻)云(驰耻苍)为(奥别颈)什(厂丑颈)么(惭别)帮(叠补苍驳)范(贵补苍)闲(齿颈补苍)恢(贬耻颈)复(贵耻)了(尝颈补辞)真(窜丑别苍)气(蚕颈)的(顿别)具(闯耻)体(罢颈)详(齿颈补苍驳)情(蚕颈苍驳),如(搁耻)果(骋耻辞)您(狈颈苍)认(搁别苍)为(奥别颈)写(齿颈别)得(顿别)不(叠耻)错(颁耻辞),就(闯颈耻)请(蚕颈苍驳)点(顿颈补苍)个(骋别)赞(窜补苍)吧(叠补),谢(齿颈别)谢(齿颈别)。
虫颈苍驳濒别颈250蝉丑颈测颈办耻补苍锄补颈锄补辞虫颈苍驳蝉丑补苍驳驳别苍驳箩颈补辫颈补苍虫颈补苍驳肠丑耻补苍迟辞苍驳尘别颈蝉丑颈虫耻苍丑补苍驳诲别谤耻尘别苍箩颈肠丑别虫颈苍驳。测耻虫颈苍驳箩颈补苍虫颈濒颈别虫颈补苍驳产颈,锄耻辞濒颈诲别肠丑别蝉丑别苍辫别颈蝉别、箩颈苍驳诲颈补苍诲别测耻补苍诲别苍驳丑别蝉丑耻颈诲颈虫颈苍驳测辞耻虫颈补苍驳蝉丑颈迟补诲别锄丑耻测补辞迟别锄丑别苍驳。锄耻辞飞别颈谤耻尘别苍箩颈肠丑别虫颈苍驳,迟补诲别诲颈苍驳飞别颈蝉丑颈虫颈补迟补苍辫补颈蹿补苍驳辫颈苍辫补颈诲别锄丑耻苍谤耻尘别苍箩颈补苍,蝉耻辞测颈锄补颈诲辞苍驳濒颈锄辞苍驳肠丑别苍驳蝉丑补苍驳虫耻补苍测辞苍驳濒颈补辞测颈迟补颈249肠肠诲别蹿别苍驳测辞耻濒别苍驳诲补苍驳补苍驳蹿补诲辞苍驳箩颈,锄耻颈诲补驳辞苍驳濒惫15办奥/7800谤辫尘蹿别苍驳锄丑颈苍颈耻箩耻20狈.尘/6000谤辫尘虫颈补苍蝉丑颈濒颈补辞迟补锄补颈诲辞苍驳濒颈蝉丑耻肠丑耻蝉丑补苍驳蝉丑颈辫颈补苍虫颈补苍驳锄丑辞苍驳诲颈锄丑耻补苍蝉耻蹿补濒颈诲别诲颈补辞虫颈补辞。锄丑别迟补颈辩颈苍驳测颈苍驳濒颈苍驳丑耻辞诲别虫颈补辞肠丑别箩颈苍167办驳锄丑别苍驳产别颈锄丑颈濒颈补苍驳丑别1440尘尘锄丑辞耻箩耻虫颈补苍谤补苍蝉丑颈锄丑耻补苍飞别颈驳补苍驳箩颈补谤耻尘辞迟耻辞肠丑别辩颈虫颈苍驳诲别尘别苍驳虫颈苍诲补锄补辞。锄丑别测补苍驳肠补颈驳别苍驳补苍辩耻补苍
这(Zhe)725个(Ge)机(Ji)器(Qi)学(Xue)习(Xi)术(Shu)语(Yu)表(Biao),太(Tai)全(Quan)了(Liao)2021-10-26 18:03·能(Neng)力(Li)验(Yan)证(Zheng)研(Yan)习(Xi)这(Zhe)是(Shi)几(Ji)位(Wei)机(Ji)器(Qi)学(Xue)习(Xi)权(Quan)威(Wei)专(Zhuan)家(Jia)汇(Hui)总(Zong)的(De)725个(Ge)机(Ji)器(Qi)学(Xue)习(Xi)术(Shu)语(Yu)表(Biao),非(Fei)常(Chang)全(Quan)面(Mian)了(Liao),值(Zhi)得(De)收(Shou)藏(Cang)!英(Ying)文(Wen)术(Shu)语(Yu)中(Zhong)文(Wen)翻(Fan)译(Yi)0-1 Loss Function0-1损(Sun)失(Shi)函(Han)数(Shu)Accept-Reject Sampling Method接(Jie)受(Shou)-拒(Ju)绝(Jue)抽(Chou)样(Yang)法(Fa)/接(Jie)受(Shou)-拒(Ju)绝(Jue)采(Cai)样(Yang)法(Fa)Accumulated Error Backpropagation累(Lei)积(Ji)误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)Accuracy精(Jing)度(Du)Acquisition Function采(Cai)集(Ji)函(Han)数(Shu)Action动(Dong)作(Zuo)Activation Function激(Ji)活(Huo)函(Han)数(Shu)Active Learning主(Zhu)动(Dong)学(Xue)习(Xi)Adaptive Bitrate Algorithm自(Zi)适(Shi)应(Ying)比(Bi)特(Te)率(Lv)算(Suan)法(Fa)Adaptive BoostingAdaBoostAdaptive Gradient AlgorithmAdaGradAdaptive Moment Estimation AlgorithmAdam算(Suan)法(Fa)Adaptive Resonance Theory自(Zi)适(Shi)应(Ying)谐(Xie)振(Zhen)理(Li)论(Lun)Additive Model加(Jia)性(Xing)模(Mo)型(Xing)Affinity Matrix亲(Qin)和(He)矩(Ju)阵(Zhen)Agent智(Zhi)能(Neng)体(Ti)Algorithm算(Suan)法(Fa)Alpha-Beta Pruningα-β修(Xiu)剪(Jian)法(Fa)Anomaly Detection异(Yi)常(Chang)检(Jian)测(Ce)Approximate Inference近(Jin)似(Si)推(Tui)断(Duan)Area Under ROC CurveAUCArtificial Intelligence人(Ren)工(Gong)智(Zhi)能(Neng)Artificial Neural Network人(Ren)工(Gong)神(Shen)经(Jing)网(Wang)络(Luo)Artificial Neuron人(Ren)工(Gong)神(Shen)经(Jing)元(Yuan)Attention注(Zhu)意(Yi)力(Li)Attention Mechanism注(Zhu)意(Yi)力(Li)机(Ji)制(Zhi)Attribute属(Shu)性(Xing)Attribute Space属(Shu)性(Xing)空(Kong)间(Jian)Autoencoder自(Zi)编(Bian)码(Ma)器(Qi)Automatic Differentiation自(Zi)动(Dong)微(Wei)分(Fen)Autoregressive Model自(Zi)回(Hui)归(Gui)模(Mo)型(Xing)Back Propagation反(Fan)向(Xiang)传(Chuan)播(Bo)Back Propagation Algorithm反(Fan)向(Xiang)传(Chuan)播(Bo)算(Suan)法(Fa)Back Propagation Through Time随(Sui)时(Shi)间(Jian)反(Fan)向(Xiang)传(Chuan)播(Bo)Backward Induction反(Fan)向(Xiang)归(Gui)纳(Na)Backward Search反(Fan)向(Xiang)搜(Sou)索(Suo)Bag of Words词(Ci)袋(Dai)Bandit赌(Du)博(Bo)机(Ji)/老(Lao)虎(Hu)机(Ji)Base Learner基(Ji)学(Xue)习(Xi)器(Qi)Base Learning Algorithm基(Ji)学(Xue)习(Xi)算(Suan)法(Fa)Baseline基(Ji)准(Zhun)Batch批(Pi)量(Liang)Batch Normalization批(Pi)量(Liang)规(Gui)范(Fan)化(Hua)Bayes Decision Rule贝(Bei)叶(Ye)斯(Si)决(Jue)策(Ce)准(Zhun)则(Ze)Bayes Model Averaging贝(Bei)叶(Ye)斯(Si)模(Mo)型(Xing)平(Ping)均(Jun)Bayes Optimal Classifier贝(Bei)叶(Ye)斯(Si)最(Zui)优(You)分(Fen)类(Lei)器(Qi)Bayes' Theorem贝(Bei)叶(Ye)斯(Si)定(Ding)理(Li)Bayesian Decision Theory贝(Bei)叶(Ye)斯(Si)决(Jue)策(Ce)理(Li)论(Lun)Bayesian Inference贝(Bei)叶(Ye)斯(Si)推(Tui)断(Duan)Bayesian Learning贝(Bei)叶(Ye)斯(Si)学(Xue)习(Xi)Bayesian Network贝(Bei)叶(Ye)斯(Si)网(Wang)/贝(Bei)叶(Ye)斯(Si)网(Wang)络(Luo)Bayesian Optimization贝(Bei)叶(Ye)斯(Si)优(You)化(Hua)Beam Search束(Shu)搜(Sou)索(Suo)Benchmark基(Ji)准(Zhun)Belief Network信(Xin)念(Nian)网(Wang)/信(Xin)念(Nian)网(Wang)络(Luo)Belief Propagation信(Xin)念(Nian)传(Chuan)播(Bo)Bellman Equation贝(Bei)尔(Er)曼(Man)方(Fang)程(Cheng)Bernoulli Distribution伯(Bo)努(Nu)利(Li)分(Fen)布(Bu)Beta Distribution贝(Bei)塔(Ta)分(Fen)布(Bu)Between-Class Scatter Matrix类(Lei)间(Jian)散(San)度(Du)矩(Ju)阵(Zhen)BFGSBFGSBias偏(Pian)差(Cha)/偏(Pian)置(Zhi)Bias In Affine Function偏(Pian)置(Zhi)Bias In Statistics偏(Pian)差(Cha)Bias Shift偏(Pian)置(Zhi)偏(Pian)移(Yi)Bias-Variance Decomposition偏(Pian)差(Cha) - 方(Fang)差(Cha)分(Fen)解(Jie)Bias-Variance Dilemma偏(Pian)差(Cha) - 方(Fang)差(Cha)困(Kun)境(Jing)Bidirectional Recurrent Neural Network双(Shuang)向(Xiang)循(Xun)环(Huan)神(Shen)经(Jing)网(Wang)络(Luo)Bigram二(Er)元(Yuan)语(Yu)法(Fa)Bilingual Evaluation UnderstudyBLEUBinary Classification二(Er)分(Fen)类(Lei)Binomial Distribution二(Er)项(Xiang)分(Fen)布(Bu)Binomial Test二(Er)项(Xiang)检(Jian)验(Yan)Boltzmann Distribution玻(Bo)尔(Er)兹(Zi)曼(Man)分(Fen)布(Bu)Boltzmann Machine玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)BoostingBoostingBootstrap AggregatingBaggingBootstrap Sampling自(Zi)助(Zhu)采(Cai)样(Yang)法(Fa)Bootstrapping自(Zi)助(Zhu)法(Fa)/自(Zi)举(Ju)法(Fa)Break-Event Point平(Ping)衡(Heng)点(Dian)Bucketing分(Fen)桶(Tong)Calculus of Variations变(Bian)分(Fen)法(Fa)Cascade-Correlation级(Ji)联(Lian)相(Xiang)关(Guan)Catastrophic Forgetting灾(Zai)难(Nan)性(Xing)遗(Yi)忘(Wang)Categorical Distribution类(Lei)别(Bie)分(Fen)布(Bu)Cell单(Dan)元(Yuan)Chain Rule链(Lian)式(Shi)法(Fa)则(Ze)Chebyshev Distance切(Qie)比(Bi)雪(Xue)夫(Fu)距(Ju)离(Li)Class类(Lei)别(Bie)Class-Imbalance类(Lei)别(Bie)不(Bu)平(Ping)衡(Heng)Classification分(Fen)类(Lei)Classification And Regression Tree分(Fen)类(Lei)与(Yu)回(Hui)归(Gui)树(Shu)Classifier分(Fen)类(Lei)器(Qi)Clique团(Tuan)Cluster簇(Cu)Cluster Assumption聚(Ju)类(Lei)假(Jia)设(She)Clustering聚(Ju)类(Lei)Clustering Ensemble聚(Ju)类(Lei)集(Ji)成(Cheng)Co-Training协(Xie)同(Tong)训(Xun)练(Lian)Coding Matrix编(Bian)码(Ma)矩(Ju)阵(Zhen)Collaborative Filtering协(Xie)同(Tong)过(Guo)滤(Lv)Competitive Learning竞(Jing)争(Zheng)型(Xing)学(Xue)习(Xi)Comprehensibility可(Ke)解(Jie)释(Shi)性(Xing)Computation Graph计(Ji)算(Suan)图(Tu)Computational Learning Theory计(Ji)算(Suan)学(Xue)习(Xi)理(Li)论(Lun)Conditional Entropy条(Tiao)件(Jian)熵(Zuo)Conditional Probability条(Tiao)件(Jian)概(Gai)率(Lv)Conditional Probability Distribution条(Tiao)件(Jian)概(Gai)率(Lv)分(Fen)布(Bu)Conditional Random Field条(Tiao)件(Jian)随(Sui)机(Ji)场(Chang)Conditional Risk条(Tiao)件(Jian)风(Feng)险(Xian)Confidence置(Zhi)信(Xin)度(Du)Confusion Matrix混(Hun)淆(Xiao)矩(Ju)阵(Zhen)Conjugate Distribution共(Gong)轭(Zuo)分(Fen)布(Bu)Connection Weight连(Lian)接(Jie)权(Quan)Connectionism连(Lian)接(Jie)主(Zhu)义(Yi)Consistency一(Yi)致(Zhi)性(Xing)Constrained Optimization约(Yue)束(Shu)优(You)化(Hua)Context Variable上(Shang)下(Xia)文(Wen)变(Bian)量(Liang)Context Vector上(Shang)下(Xia)文(Wen)向(Xiang)量(Liang)Context Window上(Shang)下(Xia)文(Wen)窗(Chuang)口(Kou)Context Word上(Shang)下(Xia)文(Wen)词(Ci)Contextual Bandit上(Shang)下(Xia)文(Wen)赌(Du)博(Bo)机(Ji)/上(Shang)下(Xia)文(Wen)老(Lao)虎(Hu)机(Ji)Contingency Table列(Lie)联(Lian)表(Biao)Continuous Attribute连(Lian)续(Xu)属(Shu)性(Xing)Contrastive Divergence对(Dui)比(Bi)散(San)度(Du)Convergence收(Shou)敛(Lian)Convex Optimization凸(Tu)优(You)化(Hua)Convex Quadratic Programming凸(Tu)二(Er)次(Ci)规(Gui)划(Hua)Convolution卷(Juan)积(Ji)Convolutional Kernel卷(Juan)积(Ji)核(He)Convolutional Neural Network卷(Juan)积(Ji)神(Shen)经(Jing)网(Wang)络(Luo)Coordinate Descent坐(Zuo)标(Biao)下(Xia)降(Jiang)Corpus语(Yu)料(Liao)库(Ku)Correlation Coefficient相(Xiang)关(Guan)系(Xi)数(Shu)Cosine Similarity余(Yu)弦(Xian)相(Xiang)似(Si)度(Du)Cost代(Dai)价(Jia)Cost Curve代(Dai)价(Jia)曲(Qu)线(Xian)Cost Function代(Dai)价(Jia)函(Han)数(Shu)Cost Matrix代(Dai)价(Jia)矩(Ju)阵(Zhen)Cost-Sensitive代(Dai)价(Jia)敏(Min)感(Gan)Covariance协(Xie)方(Fang)差(Cha)Covariance Matrix协(Xie)方(Fang)差(Cha)矩(Ju)阵(Zhen)Critical Point临(Lin)界(Jie)点(Dian)Cross Entropy交(Jiao)叉(Cha)熵(Zuo)Cross Validation交(Jiao)叉(Cha)验(Yan)证(Zheng)Curse of Dimensionality维(Wei)数(Shu)灾(Zai)难(Nan)Cutting Plane Algorithm割(Ge)平(Ping)面(Mian)法(Fa)Data Mining数(Shu)据(Ju)挖(Wa)掘(Jue)Data Set数(Shu)据(Ju)集(Ji)Davidon-Fletcher-PowellDFPDecision Boundary决(Jue)策(Ce)边(Bian)界(Jie)Decision Function决(Jue)策(Ce)函(Han)数(Shu)Decision Stump决(Jue)策(Ce)树(Shu)桩(Zhuang)Decision Tree决(Jue)策(Ce)树(Shu)Decoder解(Jie)码(Ma)器(Qi)Decoding解(Jie)码(Ma)Deconvolution反(Fan)卷(Juan)积(Ji)Deconvolutional Network反(Fan)卷(Juan)积(Ji)网(Wang)络(Luo)Deduction演(Yan)绎(Yi)Deep Belief Network深(Shen)度(Du)信(Xin)念(Nian)网(Wang)络(Luo)Deep Boltzmann Machine深(Shen)度(Du)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Deep Convolutional Generative Adversarial Network深(Shen)度(Du)卷(Juan)积(Ji)生(Sheng)成(Cheng)对(Dui)抗(Kang)网(Wang)络(Luo)Deep Learning深(Shen)度(Du)学(Xue)习(Xi)Deep Neural Network深(Shen)度(Du)神(Shen)经(Jing)网(Wang)络(Luo)Deep Q-Network深(Shen)度(Du)Q网(Wang)络(Luo)Delta-Bar-DeltaDelta-Bar-DeltaDenoising去(Qu)噪(Zao)Denoising Autoencoder去(Qu)噪(Zao)自(Zi)编(Bian)码(Ma)器(Qi)Denoising Score Matching去(Qu)躁(Zao)分(Fen)数(Shu)匹(Pi)配(Pei)Density Estimation密(Mi)度(Du)估(Gu)计(Ji)Density-Based Clustering密(Mi)度(Du)聚(Ju)类(Lei)Derivative导(Dao)数(Shu)Determinant行(Xing)列(Lie)式(Shi)Diagonal Matrix对(Dui)角(Jiao)矩(Ju)阵(Zhen)Dictionary Learning字(Zi)典(Dian)学(Xue)习(Xi)Dimension Reduction降(Jiang)维(Wei)Directed Edge有(You)向(Xiang)边(Bian)Directed Graphical Model有(You)向(Xiang)图(Tu)模(Mo)型(Xing)Directed Separation有(You)向(Xiang)分(Fen)离(Li)Dirichlet Distribution狄(Di)利(Li)克(Ke)雷(Lei)分(Fen)布(Bu)Discriminative Model判(Pan)别(Bie)式(Shi)模(Mo)型(Xing)Discriminator判(Pan)别(Bie)器(Qi)Discriminator Network判(Pan)别(Bie)网(Wang)络(Luo)Distance Measure距(Ju)离(Li)度(Du)量(Liang)Distance Metric Learning距(Ju)离(Li)度(Du)量(Liang)学(Xue)习(Xi)Distributed Representation分(Fen)布(Bu)式(Shi)表(Biao)示(Shi)Diverge发(Fa)散(San)Divergence散(San)度(Du)Diversity多(Duo)样(Yang)性(Xing)Diversity Measure多(Duo)样(Yang)性(Xing)度(Du)量(Liang)/差(Cha)异(Yi)性(Xing)度(Du)量(Liang)Domain Adaptation领(Ling)域(Yu)自(Zi)适(Shi)应(Ying)Dominant Strategy主(Zhu)特(Te)征(Zheng)值(Zhi)Dominant Strategy占(Zhan)优(You)策(Ce)略(Lue)Down Sampling下(Xia)采(Cai)样(Yang)Dropout暂(Zan)退(Tui)法(Fa)Dropout Boosting暂(Zan)退(Tui)BoostingDropout Method暂(Zan)退(Tui)法(Fa)Dual Problem对(Dui)偶(Ou)问(Wen)题(Ti)Dummy Node哑(Ya)结(Jie)点(Dian)Dynamic Bayesian Network动(Dong)态(Tai)贝(Bei)叶(Ye)斯(Si)网(Wang)络(Luo)Dynamic Programming动(Dong)态(Tai)规(Gui)划(Hua)Early Stopping早(Zao)停(Ting)Eigendecomposition特(Te)征(Zheng)分(Fen)解(Jie)Eigenvalue特(Te)征(Zheng)值(Zhi)Element-Wise Product逐(Zhu)元(Yuan)素(Su)积(Ji)Embedding嵌(Qian)入(Ru)Empirical Conditional Entropy经(Jing)验(Yan)条(Tiao)件(Jian)熵(Zuo)Empirical Distribution经(Jing)验(Yan)分(Fen)布(Bu)Empirical Entropy经(Jing)验(Yan)熵(Zuo)Empirical Error经(Jing)验(Yan)误(Wu)差(Cha)Empirical Risk经(Jing)验(Yan)风(Feng)险(Xian)Empirical Risk Minimization经(Jing)验(Yan)风(Feng)险(Xian)最(Zui)小(Xiao)化(Hua)Encoder编(Bian)码(Ma)器(Qi)Encoding编(Bian)码(Ma)End-To-End端(Duan)到(Dao)端(Duan)Energy Function能(Neng)量(Liang)函(Han)数(Shu)Energy-Based Model基(Ji)于(Yu)能(Neng)量(Liang)的(De)模(Mo)型(Xing)Ensemble Learning集(Ji)成(Cheng)学(Xue)习(Xi)Ensemble Pruning集(Ji)成(Cheng)修(Xiu)剪(Jian)Entropy熵(Zuo)Episode回(Hui)合(He)Epoch轮(Lun)Error误(Wu)差(Cha)Error Backpropagation Algorithm误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)算(Suan)法(Fa)Error Backpropagation误(Wu)差(Cha)反(Fan)向(Xiang)传(Chuan)播(Bo)Error Correcting Output Codes纠(Jiu)错(Cuo)输(Shu)出(Chu)编(Bian)码(Ma)Error Rate错(Cuo)误(Wu)率(Lv)Error-Ambiguity Decomposition误(Wu)差(Cha)-分(Fen)歧(Qi)分(Fen)解(Jie)Estimator估(Gu)计(Ji)/估(Gu)计(Ji)量(Liang)Euclidean Distance欧(Ou)氏(Shi)距(Ju)离(Li)Evidence证(Zheng)据(Ju)Evidence Lower Bound证(Zheng)据(Ju)下(Xia)界(Jie)Exact Inference精(Jing)确(Que)推(Tui)断(Duan)Example样(Yang)例(Li)Expectation期(Qi)望(Wang)Expectation Maximization期(Qi)望(Wang)最(Zui)大(Da)化(Hua)Expected Loss期(Qi)望(Wang)损(Sun)失(Shi)Expert System专(Zhuan)家(Jia)系(Xi)统(Tong)Exploding Gradient梯(Ti)度(Du)爆(Bao)炸(Zha)Exponential Loss Function指(Zhi)数(Shu)损(Sun)失(Shi)函(Han)数(Shu)Factor因(Yin)子(Zi)Factorization因(Yin)子(Zi)分(Fen)解(Jie)Feature特(Te)征(Zheng)Feature Engineering特(Te)征(Zheng)工(Gong)程(Cheng)Feature Map特(Te)征(Zheng)图(Tu)Feature Selection特(Te)征(Zheng)选(Xuan)择(Ze)Feature Vector特(Te)征(Zheng)向(Xiang)量(Liang)Featured Learning特(Te)征(Zheng)学(Xue)习(Xi)Feedforward前(Qian)馈(Kui)Feedforward Neural Network前(Qian)馈(Kui)神(Shen)经(Jing)网(Wang)络(Luo)Few-Shot Learning少(Shao)试(Shi)学(Xue)习(Xi)Filter滤(Lv)波(Bo)器(Qi)Fine-Tuning微(Wei)调(Diao)Fluctuation振(Zhen)荡(Dang)Forget Gate遗(Yi)忘(Wang)门(Men)Forward Propagation前(Qian)向(Xiang)传(Chuan)播(Bo)/正(Zheng)向(Xiang)传(Chuan)播(Bo)Forward Stagewise Algorithm前(Qian)向(Xiang)分(Fen)步(Bu)算(Suan)法(Fa)Fractionally Strided Convolution微(Wei)步(Bu)卷(Juan)积(Ji)Frobenius NormFrobenius 范(Fan)数(Shu)Full Padding全(Quan)填(Tian)充(Chong)Functional泛(Fan)函(Han)Functional Neuron功(Gong)能(Neng)神(Shen)经(Jing)元(Yuan)Gated Recurrent Unit门(Men)控(Kong)循(Xun)环(Huan)单(Dan)元(Yuan)Gated RNN门(Men)控(Kong)RNNGaussian Distribution高(Gao)斯(Si)分(Fen)布(Bu)Gaussian Kernel高(Gao)斯(Si)核(He)Gaussian Kernel Function高(Gao)斯(Si)核(He)函(Han)数(Shu)Gaussian Mixture Model高(Gao)斯(Si)混(Hun)合(He)模(Mo)型(Xing)Gaussian Process高(Gao)斯(Si)过(Guo)程(Cheng)Generalization Ability泛(Fan)化(Hua)能(Neng)力(Li)Generalization Error泛(Fan)化(Hua)误(Wu)差(Cha)Generalization Error Bound泛(Fan)化(Hua)误(Wu)差(Cha)上(Shang)界(Jie)Generalize泛(Fan)化(Hua)Generalized Lagrange Function广(Guang)义(Yi)拉(La)格(Ge)朗(Lang)日(Ri)函(Han)数(Shu)Generalized Linear Model广(Guang)义(Yi)线(Xian)性(Xing)模(Mo)型(Xing)Generalized Rayleigh Quotient广(Guang)义(Yi)瑞(Rui)利(Li)商(Shang)Generative Adversarial Network生(Sheng)成(Cheng)对(Dui)抗(Kang)网(Wang)络(Luo)Generative Model生(Sheng)成(Cheng)式(Shi)模(Mo)型(Xing)Generator生(Sheng)成(Cheng)器(Qi)Generator Network生(Sheng)成(Cheng)器(Qi)网(Wang)络(Luo)Genetic Algorithm遗(Yi)传(Chuan)算(Suan)法(Fa)Gibbs Distribution吉(Ji)布(Bu)斯(Si)分(Fen)布(Bu)Gibbs Sampling吉(Ji)布(Bu)斯(Si)采(Cai)样(Yang)/吉(Ji)布(Bu)斯(Si)抽(Chou)样(Yang)Gini Index基(Ji)尼(Ni)指(Zhi)数(Shu)Global Markov Property全(Quan)局(Ju)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Global Minimum全(Quan)局(Ju)最(Zui)小(Xiao)Gradient梯(Ti)度(Du)Gradient Clipping梯(Ti)度(Du)截(Jie)断(Duan)Gradient Descent梯(Ti)度(Du)下(Xia)降(Jiang)Gradient Descent Method梯(Ti)度(Du)下(Xia)降(Jiang)法(Fa)Gradient Exploding Problem梯(Ti)度(Du)爆(Bao)炸(Zha)问(Wen)题(Ti)Gram MatrixGram 矩(Ju)阵(Zhen)Graph Convolutional Network图(Tu)卷(Juan)积(Ji)神(Shen)经(Jing)网(Wang)络(Luo)/图(Tu)卷(Juan)积(Ji)网(Wang)络(Luo)Graph Neural Network图(Tu)神(Shen)经(Jing)网(Wang)络(Luo)Graphical Model图(Tu)模(Mo)型(Xing)Grid Search网(Wang)格(Ge)搜(Sou)索(Suo)Ground Truth真(Zhen)实(Shi)值(Zhi)Hadamard ProductHadamard积(Ji)Hamming Distance汉(Han)明(Ming)距(Ju)离(Li)Hard Margin硬(Ying)间(Jian)隔(Ge)Hebbian Rule赫(He)布(Bu)法(Fa)则(Ze)Hidden Layer隐(Yin)藏(Cang)层(Ceng)Hidden Markov Model隐(Yin)马(Ma)尔(Er)可(Ke)夫(Fu)模(Mo)型(Xing)Hidden Variable隐(Yin)变(Bian)量(Liang)Hierarchical Clustering层(Ceng)次(Ci)聚(Ju)类(Lei)Hilbert Space希(Xi)尔(Er)伯(Bo)特(Te)空(Kong)间(Jian)Hinge Loss Function合(He)页(Ye)损(Sun)失(Shi)函(Han)数(Shu)/Hinge损(Sun)失(Shi)函(Han)数(Shu)Hold-Out留(Liu)出(Chu)法(Fa)Hyperparameter超(Chao)参(Can)数(Shu)Hyperparameter Optimization超(Chao)参(Can)数(Shu)优(You)化(Hua)Hypothesis假(Jia)设(She)Hypothesis Space假(Jia)设(She)空(Kong)间(Jian)Hypothesis Test假(Jia)设(She)检(Jian)验(Yan)Identity Matrix单(Dan)位(Wei)矩(Ju)阵(Zhen)Imitation Learning模(Mo)仿(Fang)学(Xue)习(Xi)Importance Sampling重(Zhong)要(Yao)性(Xing)采(Cai)样(Yang)Improved Iterative Scaling改(Gai)进(Jin)的(De)迭(Die)代(Dai)尺(Chi)度(Du)法(Fa)Incremental Learning增(Zeng)量(Liang)学(Xue)习(Xi)Independent and Identically Distributed独(Du)立(Li)同(Tong)分(Fen)布(Bu)Indicator Function指(Zhi)示(Shi)函(Han)数(Shu)Individual Learner个(Ge)体(Ti)学(Xue)习(Xi)器(Qi)Induction归(Gui)纳(Na)Inductive Bias归(Gui)纳(Na)偏(Pian)好(Hao)Inductive Learning归(Gui)纳(Na)学(Xue)习(Xi)Inductive Logic Programming归(Gui)纳(Na)逻(Luo)辑(Ji)程(Cheng)序(Xu)设(She)计(Ji)Inference推(Tui)断(Duan)Information Entropy信(Xin)息(Xi)熵(Zuo)Information Gain信(Xin)息(Xi)增(Zeng)益(Yi)Inner Product内(Nei)积(Ji)Instance示(Shi)例(Li)Internal Covariate Shift内(Nei)部(Bu)协(Xie)变(Bian)量(Liang)偏(Pian)移(Yi)Inverse Matrix逆(Ni)矩(Ju)阵(Zhen)Inverse Resolution逆(Ni)归(Gui)结(Jie)Isometric Mapping等(Deng)度(Du)量(Liang)映(Ying)射(She)Jacobian Matrix雅(Ya)可(Ke)比(Bi)矩(Ju)阵(Zhen)Jensen InequalityJensen不(Bu)等(Deng)式(Shi)Joint Probability Distribution联(Lian)合(He)概(Gai)率(Lv)分(Fen)布(Bu)K-Armed Bandit Problemk-摇(Yao)臂(Bi)老(Lao)虎(Hu)机(Ji)K-Fold Cross Validationk 折(Zhe)交(Jiao)叉(Cha)验(Yan)证(Zheng)Karush-Kuhn-Tucker ConditionKKT条(Tiao)件(Jian)Karush–Kuhn–TuckerKarush–Kuhn–TuckerKernel Function核(He)函(Han)数(Shu)Kernel Method核(He)方(Fang)法(Fa)Kernel Trick核(He)技(Ji)巧(Qiao)Kernelized Linear Discriminant Analysis核(He)线(Xian)性(Xing)判(Pan)别(Bie)分(Fen)析(Xi)KL DivergenceKL散(San)度(Du)L-BFGSL-BFGSLabel标(Biao)签(Qian)Label Space标(Biao)记(Ji)空(Kong)间(Jian)Lagrange Duality拉(La)格(Ge)朗(Lang)日(Ri)对(Dui)偶(Ou)性(Xing)Lagrange Multiplier拉(La)格(Ge)朗(Lang)日(Ri)乘(Cheng)子(Zi)Language Model语(Yu)言(Yan)模(Mo)型(Xing)Laplace Smoothing拉(La)普(Pu)拉(La)斯(Si)平(Ping)滑(Hua)Laplacian Correction拉(La)普(Pu)拉(La)斯(Si)修(Xiu)正(Zheng)Latent Dirichlet Allocation潜(Qian)在(Zai)狄(Di)利(Li)克(Ke)雷(Lei)分(Fen)配(Pei)Latent Semantic Analysis潜(Qian)在(Zai)语(Yu)义(Yi)分(Fen)析(Xi)Latent Variable潜(Qian)变(Bian)量(Liang)/隐(Yin)变(Bian)量(Liang)Law of Large Numbers大(Da)数(Shu)定(Ding)律(Lv)Layer Normalization层(Ceng)规(Gui)范(Fan)化(Hua)Lazy Learning懒(Lan)惰(Duo)学(Xue)习(Xi)Leaky Relu泄(Xie)漏(Lou)修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/泄(Xie)漏(Lou)整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Learner学(Xue)习(Xi)器(Qi)Learning学(Xue)习(Xi)Learning By Analogy类(Lei)比(Bi)学(Xue)习(Xi)Learning Rate学(Xue)习(Xi)率(Lv)Learning Vector Quantization学(Xue)习(Xi)向(Xiang)量(Liang)量(Liang)化(Hua)Least Square Method最(Zui)小(Xiao)二(Er)乘(Cheng)法(Fa)Least Squares Regression Tree最(Zui)小(Xiao)二(Er)乘(Cheng)回(Hui)归(Gui)树(Shu)Left Singular Vector左(Zuo)奇(Qi)异(Yi)向(Xiang)量(Liang)Likelihood似(Si)然(Ran)Linear Chain Conditional Random Field线(Xian)性(Xing)链(Lian)条(Tiao)件(Jian)随(Sui)机(Ji)场(Chang)Linear Classification Model线(Xian)性(Xing)分(Fen)类(Lei)模(Mo)型(Xing)Linear Classifier线(Xian)性(Xing)分(Fen)类(Lei)器(Qi)Linear Dependence线(Xian)性(Xing)相(Xiang)关(Guan)Linear Discriminant Analysis线(Xian)性(Xing)判(Pan)别(Bie)分(Fen)析(Xi)Linear Model线(Xian)性(Xing)模(Mo)型(Xing)Linear Regression线(Xian)性(Xing)回(Hui)归(Gui)Link Function联(Lian)系(Xi)函(Han)数(Shu)Local Markov Property局(Ju)部(Bu)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Local Minima局(Ju)部(Bu)极(Ji)小(Xiao)Local Minimum局(Ju)部(Bu)极(Ji)小(Xiao)Local Representation局(Ju)部(Bu)式(Shi)表(Biao)示(Shi)/局(Ju)部(Bu)式(Shi)表(Biao)征(Zheng)Log Likelihood对(Dui)数(Shu)似(Si)然(Ran)函(Han)数(Shu)Log Linear Model对(Dui)数(Shu)线(Xian)性(Xing)模(Mo)型(Xing)Log-Likelihood对(Dui)数(Shu)似(Si)然(Ran)Log-Linear Regression对(Dui)数(Shu)线(Xian)性(Xing)回(Hui)归(Gui)Logistic Function对(Dui)数(Shu)几(Ji)率(Lv)函(Han)数(Shu)Logistic Regression对(Dui)数(Shu)几(Ji)率(Lv)回(Hui)归(Gui)Logit对(Dui)数(Shu)几(Ji)率(Lv)Long Short Term Memory长(Chang)短(Duan)期(Qi)记(Ji)忆(Yi)Long Short-Term Memory Network长(Chang)短(Duan)期(Qi)记(Ji)忆(Yi)网(Wang)络(Luo)Loopy Belief Propagation环(Huan)状(Zhuang)信(Xin)念(Nian)传(Chuan)播(Bo)Loss Function损(Sun)失(Shi)函(Han)数(Shu)Low Rank Matrix Approximation低(Di)秩(Zhi)矩(Ju)阵(Zhen)近(Jin)似(Si)Machine Learning机(Ji)器(Qi)学(Xue)习(Xi)Macron-R宏(Hong)查(Cha)全(Quan)率(Lv)Manhattan Distance曼(Man)哈(Ha)顿(Dun)距(Ju)离(Li)Manifold流(Liu)形(Xing)Manifold Assumption流(Liu)形(Xing)假(Jia)设(She)Manifold Learning流(Liu)形(Xing)学(Xue)习(Xi)Margin间(Jian)隔(Ge)Marginal Distribution边(Bian)缘(Yuan)分(Fen)布(Bu)Marginal Independence边(Bian)缘(Yuan)独(Du)立(Li)性(Xing)Marginalization边(Bian)缘(Yuan)化(Hua)Markov Chain马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)Markov Chain Monte Carlo马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)蒙(Meng)特(Te)卡(Ka)罗(Luo)Markov Decision Process马(Ma)尔(Er)可(Ke)夫(Fu)决(Jue)策(Ce)过(Guo)程(Cheng)Markov Network马(Ma)尔(Er)可(Ke)夫(Fu)网(Wang)络(Luo)Markov Process马(Ma)尔(Er)可(Ke)夫(Fu)过(Guo)程(Cheng)Markov Random Field马(Ma)尔(Er)可(Ke)夫(Fu)随(Sui)机(Ji)场(Chang)Mask掩(Yan)码(Ma)Matrix矩(Ju)阵(Zhen)Matrix Inversion逆(Ni)矩(Ju)阵(Zhen)Max Pooling最(Zui)大(Da)汇(Hui)聚(Ju)Maximal Clique最(Zui)大(Da)团(Tuan)Maximum Entropy Model最(Zui)大(Da)熵(Zuo)模(Mo)型(Xing)Maximum Likelihood Estimation极(Ji)大(Da)似(Si)然(Ran)估(Gu)计(Ji)Maximum Margin最(Zui)大(Da)间(Jian)隔(Ge)Mean Filed平(Ping)均(Jun)场(Chang)Mean Pooling平(Ping)均(Jun)汇(Hui)聚(Ju)Mean Squared Error均(Jun)方(Fang)误(Wu)差(Cha)Mean-Field平(Ping)均(Jun)场(Chang)Memory Network记(Ji)忆(Yi)网(Wang)络(Luo)Message Passing消(Xiao)息(Xi)传(Chuan)递(Di)Metric Learning度(Du)量(Liang)学(Xue)习(Xi)Micro-R微(Wei)查(Cha)全(Quan)率(Lv)Minibatch小(Xiao)批(Pi)量(Liang)Minimal Description Length最(Zui)小(Xiao)描(Miao)述(Shu)长(Chang)度(Du)Minimax Game极(Ji)小(Xiao)极(Ji)大(Da)博(Bo)弈(Zuo)Minkowski Distance闵(Zuo)可(Ke)夫(Fu)斯(Si)基(Ji)距(Ju)离(Li)Mixture of Experts混(Hun)合(He)专(Zhuan)家(Jia)模(Mo)型(Xing)Mixture-of-Gaussian高(Gao)斯(Si)混(Hun)合(He)Model模(Mo)型(Xing)Model Selection模(Mo)型(Xing)选(Xuan)择(Ze)Momentum Method动(Dong)量(Liang)法(Fa)Monte Carlo Method蒙(Meng)特(Te)卡(Ka)罗(Luo)方(Fang)法(Fa)Moral Graph端(Duan)正(Zheng)图(Tu)/道(Dao)德(De)图(Tu)Moralization道(Dao)德(De)化(Hua)Multi-Class Classification多(Duo)分(Fen)类(Lei)Multi-Head Attention多(Duo)头(Tou)注(Zhu)意(Yi)力(Li)Multi-Head Self-Attention多(Duo)头(Tou)自(Zi)注(Zhu)意(Yi)力(Li)Multi-Kernel Learning多(Duo)核(He)学(Xue)习(Xi)Multi-Label Learning多(Duo)标(Biao)记(Ji)学(Xue)习(Xi)Multi-Layer Feedforward Neural Networks多(Duo)层(Ceng)前(Qian)馈(Kui)神(Shen)经(Jing)网(Wang)络(Luo)Multi-Layer Perceptron多(Duo)层(Ceng)感(Gan)知(Zhi)机(Ji)Multinomial Distribution多(Duo)项(Xiang)分(Fen)布(Bu)Multiple Dimensional Scaling多(Duo)维(Wei)缩(Suo)放(Fang)Multiple Linear Regression多(Duo)元(Yuan)线(Xian)性(Xing)回(Hui)归(Gui)Multitask Learning多(Duo)任(Ren)务(Wu)学(Xue)习(Xi)Multivariate Normal Distribution多(Duo)元(Yuan)正(Zheng)态(Tai)分(Fen)布(Bu)Mutual Information互(Hu)信(Xin)息(Xi)N-Gram ModelN元(Yuan)模(Mo)型(Xing)Naive Bayes Classifier朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)分(Fen)类(Lei)器(Qi)Naive Bayes朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)Nearest Neighbor Classifier最(Zui)近(Jin)邻(Lin)分(Fen)类(Lei)器(Qi)Negative Log Likelihood负(Fu)对(Dui)数(Shu)似(Si)然(Ran)函(Han)数(Shu)Neighbourhood Component Analysis近(Jin)邻(Lin)成(Cheng)分(Fen)分(Fen)析(Xi)Net Input净(Jing)输(Shu)入(Ru)Neural Network神(Shen)经(Jing)网(Wang)络(Luo)Neural Turing Machine神(Shen)经(Jing)图(Tu)灵(Ling)机(Ji)Neuron神(Shen)经(Jing)元(Yuan)Newton Method牛(Niu)顿(Dun)法(Fa)No Free Lunch Theorem没(Mei)有(You)免(Mian)费(Fei)午(Wu)餐(Can)定(Ding)理(Li)Noise-Contrastive Estimation噪(Zao)声(Sheng)对(Dui)比(Bi)估(Gu)计(Ji)Nominal Attribute列(Lie)名(Ming)属(Shu)性(Xing)Non-Convex Optimization非(Fei)凸(Tu)优(You)化(Hua)Non-Metric Distance非(Fei)度(Du)量(Liang)距(Ju)离(Li)Non-Negative Matrix Factorization非(Fei)负(Fu)矩(Ju)阵(Zhen)分(Fen)解(Jie)Non-Ordinal Attribute无(Wu)序(Xu)属(Shu)性(Xing)Norm范(Fan)数(Shu)Normal Distribution正(Zheng)态(Tai)分(Fen)布(Bu)Normalization规(Gui)范(Fan)化(Hua)Nuclear Norm核(He)范(Fan)数(Shu)Number of Epochs轮(Lun)数(Shu)Numerical Attribute数(Shu)值(Zhi)属(Shu)性(Xing)Object Detection目(Mu)标(Biao)检(Jian)测(Ce)Oblique Decision Tree斜(Xie)决(Jue)策(Ce)树(Shu)Occam's Razor奥(Ao)卡(Ka)姆(Mu)剃(Ti)刀(Dao)Odds几(Ji)率(Lv)Off-Policy异(Yi)策(Ce)略(Lue)On-Policy同(Tong)策(Ce)略(Lue)One-Dependent Estimator独(Du)依(Yi)赖(Lai)估(Gu)计(Ji)One-Hot独(Du)热(Re)Online Learning在(Zai)线(Xian)学(Xue)习(Xi)Optimizer优(You)化(Hua)器(Qi)Ordinal Attribute有(You)序(Xu)属(Shu)性(Xing)Orthogonal正(Zheng)交(Jiao)Orthogonal Matrix正(Zheng)交(Jiao)矩(Ju)阵(Zhen)Out-Of-Bag Estimate包(Bao)外(Wai)估(Gu)计(Ji)Outlier异(Yi)常(Chang)点(Dian)Over-Parameterized过(Guo)度(Du)参(Can)数(Shu)化(Hua)Overfitting过(Guo)拟(Ni)合(He)Oversampling过(Guo)采(Cai)样(Yang)Pac-LearnablePAC可(Ke)学(Xue)习(Xi)Padding填(Tian)充(Chong)Pairwise Markov Property成(Cheng)对(Dui)马(Ma)尔(Er)可(Ke)夫(Fu)性(Xing)Parallel Distributed Processing分(Fen)布(Bu)式(Shi)并(Bing)行(Xing)处(Chu)理(Li)Parameter参(Can)数(Shu)Parameter Estimation参(Can)数(Shu)估(Gu)计(Ji)Parameter Space参(Can)数(Shu)空(Kong)间(Jian)Parameter Tuning调(Diao)参(Can)Parametric ReLU参(Can)数(Shu)化(Hua)修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/参(Can)数(Shu)化(Hua)整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Part-Of-Speech Tagging词(Ci)性(Xing)标(Biao)注(Zhu)Partial Derivative偏(Pian)导(Dao)数(Shu)Partially Observable Markov Decision Processes部(Bu)分(Fen)可(Ke)观(Guan)测(Ce)马(Ma)尔(Er)可(Ke)夫(Fu)决(Jue)策(Ce)过(Guo)程(Cheng)Partition Function配(Pei)分(Fen)函(Han)数(Shu)Perceptron感(Gan)知(Zhi)机(Ji)Performance Measure性(Xing)能(Neng)度(Du)量(Liang)Perplexity困(Kun)惑(Huo)度(Du)Pointer Network指(Zhi)针(Zhen)网(Wang)络(Luo)Policy策(Ce)略(Lue)Policy Gradient策(Ce)略(Lue)梯(Ti)度(Du)Policy Iteration策(Ce)略(Lue)迭(Die)代(Dai)Polynomial Kernel Function多(Duo)项(Xiang)式(Shi)核(He)函(Han)数(Shu)Pooling汇(Hui)聚(Ju)Pooling Layer汇(Hui)聚(Ju)层(Ceng)Positive Definite Matrix正(Zheng)定(Ding)矩(Ju)阵(Zhen)Post-Pruning后(Hou)剪(Jian)枝(Zhi)Potential Function势(Shi)函(Han)数(Shu)Power Method幂(Mi)法(Fa)Pre-Training预(Yu)训(Xun)练(Lian)Precision查(Cha)准(Zhun)率(Lv)/准(Zhun)确(Que)率(Lv)Prepruning预(Yu)剪(Jian)枝(Zhi)Primal Problem主(Zhu)问(Wen)题(Ti)Primary Visual Cortex初(Chu)级(Ji)视(Shi)觉(Jue)皮(Pi)层(Ceng)Principal Component Analysis主(Zhu)成(Cheng)分(Fen)分(Fen)析(Xi)Prior先(Xian)验(Yan)Probabilistic Context-Free Grammar概(Gai)率(Lv)上(Shang)下(Xia)文(Wen)无(Wu)关(Guan)文(Wen)法(Fa)Probabilistic Graphical Model概(Gai)率(Lv)图(Tu)模(Mo)型(Xing)Probabilistic Model概(Gai)率(Lv)模(Mo)型(Xing)Probability Density Function概(Gai)率(Lv)密(Mi)度(Du)函(Han)数(Shu)Probability Distribution概(Gai)率(Lv)分(Fen)布(Bu)Probably Approximately Correct概(Gai)率(Lv)近(Jin)似(Si)正(Zheng)确(Que)Proposal Distribution提(Ti)议(Yi)分(Fen)布(Bu)Prototype-Based Clustering原(Yuan)型(Xing)聚(Ju)类(Lei)Proximal Gradient Descent近(Jin)端(Duan)梯(Ti)度(Du)下(Xia)降(Jiang)Pruning剪(Jian)枝(Zhi)Quadratic Loss Function平(Ping)方(Fang)损(Sun)失(Shi)函(Han)数(Shu)Quadratic Programming二(Er)次(Ci)规(Gui)划(Hua)Quasi Newton Method拟(Ni)牛(Niu)顿(Dun)法(Fa)Radial Basis Function径(Jing)向(Xiang)基(Ji)函(Han)数(Shu)Random Forest随(Sui)机(Ji)森(Sen)林(Lin)Random Sampling随(Sui)机(Ji)采(Cai)样(Yang)Random Search随(Sui)机(Ji)搜(Sou)索(Suo)Random Variable随(Sui)机(Ji)变(Bian)量(Liang)Random Walk随(Sui)机(Ji)游(You)走(Zou)Recall查(Cha)全(Quan)率(Lv)/召(Zhao)回(Hui)率(Lv)Receptive Field感(Gan)受(Shou)野(Ye)Reconstruction Error重(Zhong)构(Gou)误(Wu)差(Cha)Rectified Linear Unit修(Xiu)正(Zheng)线(Xian)性(Xing)单(Dan)元(Yuan)/整(Zheng)流(Liu)线(Xian)性(Xing)单(Dan)元(Yuan)Recurrent Neural Network循(Xun)环(Huan)神(Shen)经(Jing)网(Wang)络(Luo)Recursive Neural Network递(Di)归(Gui)神(Shen)经(Jing)网(Wang)络(Luo)Regression回(Hui)归(Gui)Regularization正(Zheng)则(Ze)化(Hua)Regularizer正(Zheng)则(Ze)化(Hua)项(Xiang)Reinforcement Learning强(Qiang)化(Hua)学(Xue)习(Xi)Relative Entropy相(Xiang)对(Dui)熵(Zuo)Reparameterization再(Zai)参(Can)数(Shu)化(Hua)/重(Zhong)参(Can)数(Shu)化(Hua)Representation表(Biao)示(Shi)Representation Learning表(Biao)示(Shi)学(Xue)习(Xi)Representer Theorem表(Biao)示(Shi)定(Ding)理(Li)Reproducing Kernel Hilbert Space再(Zai)生(Sheng)核(He)希(Xi)尔(Er)伯(Bo)特(Te)空(Kong)间(Jian)Rescaling再(Zai)缩(Suo)放(Fang)Reset Gate重(Zhong)置(Zhi)门(Men)Residual Connection残(Can)差(Cha)连(Lian)接(Jie)Residual Network残(Can)差(Cha)网(Wang)络(Luo)Restricted Boltzmann Machine受(Shou)限(Xian)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Reward奖(Jiang)励(Li)Ridge Regression岭(Ling)回(Hui)归(Gui)Right Singular Vector右(You)奇(Qi)异(Yi)向(Xiang)量(Liang)Risk风(Feng)险(Xian)Robustness稳(Wen)健(Jian)性(Xing)Root Node根(Gen)结(Jie)点(Dian)Rule Learning规(Gui)则(Ze)学(Xue)习(Xi)Saddle Point鞍(An)点(Dian)Sample样(Yang)本(Ben)Sample Complexity样(Yang)本(Ben)复(Fu)杂(Za)度(Du)Sample Space样(Yang)本(Ben)空(Kong)间(Jian)Scalar标(Biao)量(Liang)Selective Ensemble选(Xuan)择(Ze)性(Xing)集(Ji)成(Cheng)Self Information自(Zi)信(Xin)息(Xi)Self-Attention自(Zi)注(Zhu)意(Yi)力(Li)Self-Organizing Map自(Zi)组(Zu)织(Zhi)映(Ying)射(She)网(Wang)Self-Training自(Zi)训(Xun)练(Lian)Semi-Definite Programming半(Ban)正(Zheng)定(Ding)规(Gui)划(Hua)Semi-Naive Bayes Classifiers半(Ban)朴(Pu)素(Su)贝(Bei)叶(Ye)斯(Si)分(Fen)类(Lei)器(Qi)Semi-Restricted Boltzmann Machine半(Ban)受(Shou)限(Xian)玻(Bo)尔(Er)兹(Zi)曼(Man)机(Ji)Semi-Supervised Clustering半(Ban)监(Jian)督(Du)聚(Ju)类(Lei)Semi-Supervised Learning半(Ban)监(Jian)督(Du)学(Xue)习(Xi)Semi-Supervised Support Vector Machine半(Ban)监(Jian)督(Du)支(Zhi)持(Chi)向(Xiang)量(Liang)机(Ji)Sentiment Analysis情(Qing)感(Gan)分(Fen)析(Xi)Separating Hyperplane分(Fen)离(Li)超(Chao)平(Ping)面(Mian)Sequential Covering序(Xu)贯(Guan)覆(Fu)盖(Gai)Sigmoid Belief NetworkSigmoid信(Xin)念(Nian)网(Wang)络(Luo)Sigmoid FunctionSigmoid函(Han)数(Shu)Signed Distance带(Dai)符(Fu)号(Hao)距(Ju)离(Li)Similarity Measure相(Xiang)似(Si)度(Du)度(Du)量(Liang)Simulated Annealing模(Mo)拟(Ni)退(Tui)火(Huo)Simultaneous Localization And Mapping即(Ji)时(Shi)定(Ding)位(Wei)与(Yu)地(Di)图(Tu)构(Gou)建(Jian)Singular Value奇(Qi)异(Yi)值(Zhi)Singular Value Decomposition奇(Qi)异(Yi)值(Zhi)分(Fen)解(Jie)Skip-Gram Model跳(Tiao)元(Yuan)模(Mo)型(Xing)Smoothing平(Ping)滑(Hua)Soft Margin软(Ruan)间(Jian)隔(Ge)Soft Margin Maximization软(Ruan)间(Jian)隔(Ge)最(Zui)大(Da)化(Hua)SoftmaxSoftmax/软(Ruan)最(Zui)大(Da)化(Hua)Softmax FunctionSoftmax函(Han)数(Shu)/软(Ruan)最(Zui)大(Da)化(Hua)函(Han)数(Shu)Softmax RegressionSoftmax回(Hui)归(Gui)/软(Ruan)最(Zui)大(Da)化(Hua)回(Hui)归(Gui)Softplus FunctionSoftplus函(Han)数(Shu)Span张(Zhang)成(Cheng)子(Zi)空(Kong)间(Jian)Sparse Coding稀(Xi)疏(Shu)编(Bian)码(Ma)Sparse Representation稀(Xi)疏(Shu)表(Biao)示(Shi)Sparsity稀(Xi)疏(Shu)性(Xing)Specialization特(Te)化(Hua)Splitting Variable切(Qie)分(Fen)变(Bian)量(Liang)Squashing Function挤(Ji)压(Ya)函(Han)数(Shu)Standard Normal Distribution标(Biao)准(Zhun)正(Zheng)态(Tai)分(Fen)布(Bu)State状(Zhuang)态(Tai)State Value Function状(Zhuang)态(Tai)值(Zhi)函(Han)数(Shu)State-Action Value Function状(Zhuang)态(Tai)-动(Dong)作(Zuo)值(Zhi)函(Han)数(Shu)Stationary Distribution平(Ping)稳(Wen)分(Fen)布(Bu)Stationary Point驻(Zhu)点(Dian)Statistical Learning统(Tong)计(Ji)学(Xue)习(Xi)Steepest Descent最(Zui)速(Su)下(Xia)降(Jiang)法(Fa)Stochastic Gradient Descent随(Sui)机(Ji)梯(Ti)度(Du)下(Xia)降(Jiang)Stochastic Matrix随(Sui)机(Ji)矩(Ju)阵(Zhen)Stochastic Process随(Sui)机(Ji)过(Guo)程(Cheng)Stratified Sampling分(Fen)层(Ceng)采(Cai)样(Yang)Stride步(Bu)幅(Fu)Structural Risk结(Jie)构(Gou)风(Feng)险(Xian)Structural Risk Minimization结(Jie)构(Gou)风(Feng)险(Xian)最(Zui)小(Xiao)化(Hua)Subsample子(Zi)采(Cai)样(Yang)Subsampling下(Xia)采(Cai)样(Yang)Subset Search子(Zi)集(Ji)搜(Sou)索(Suo)Subspace子(Zi)空(Kong)间(Jian)Supervised Learning监(Jian)督(Du)学(Xue)习(Xi)Support Vector支(Zhi)持(Chi)向(Xiang)量(Liang)Support Vector Expansion支(Zhi)持(Chi)向(Xiang)量(Liang)展(Zhan)式(Shi)Support Vector Machine支(Zhi)持(Chi)向(Xiang)量(Liang)机(Ji)Surrogat Loss替(Ti)代(Dai)损(Sun)失(Shi)Surrogate Function替(Ti)代(Dai)函(Han)数(Shu)Surrogate Loss Function代(Dai)理(Li)损(Sun)失(Shi)函(Han)数(Shu)Symbolism符(Fu)号(Hao)主(Zhu)义(Yi)Tangent Propagation正(Zheng)切(Qie)传(Chuan)播(Bo)Teacher Forcing强(Qiang)制(Zhi)教(Jiao)学(Xue)Temporal-Difference Learning时(Shi)序(Xu)差(Cha)分(Fen)学(Xue)习(Xi)Tensor张(Zhang)量(Liang)Test Error测(Ce)试(Shi)误(Wu)差(Cha)Test Sample测(Ce)试(Shi)样(Yang)本(Ben)Test Set测(Ce)试(Shi)集(Ji)Threshold阈(Zuo)值(Zhi)Threshold Logic Unit阈(Zuo)值(Zhi)逻(Luo)辑(Ji)单(Dan)元(Yuan)Threshold-Moving阈(Zuo)值(Zhi)移(Yi)动(Dong)Tied Weight捆(Kun)绑(Bang)权(Quan)重(Zhong)Tikhonov RegularizationTikhonov正(Zheng)则(Ze)化(Hua)Time Delay Neural Network时(Shi)延(Yan)神(Shen)经(Jing)网(Wang)络(Luo)Time Homogenous Markov Chain时(Shi)间(Jian)齐(Qi)次(Ci)马(Ma)尔(Er)可(Ke)夫(Fu)链(Lian)Time Step时(Shi)间(Jian)步(Bu)Token词(Ci)元(Yuan)Token词(Ci)元(Yuan)Tokenization词(Ci)元(Yuan)化(Hua)Tokenizer词(Ci)元(Yuan)分(Fen)析(Xi)器(Qi)Topic Model话(Hua)题(Ti)模(Mo)型(Xing)Topic Modeling话(Hua)题(Ti)分(Fen)析(Xi)Trace迹(Ji)Training训(Xun)练(Lian)Training Error训(Xun)练(Lian)误(Wu)差(Cha)Training Sample训(Xun)练(Lian)样(Yang)本(Ben)Training Set训(Xun)练(Lian)集(Ji)Transductive Learning直(Zhi)推(Tui)学(Xue)习(Xi)Transductive Transfer Learning直(Zhi)推(Tui)迁(Qian)移(Yi)学(Xue)习(Xi)Transfer Learning迁(Qian)移(Yi)学(Xue)习(Xi)TransformerTransformerTransformer ModelTransformer模(Mo)型(Xing)Transpose转(Zhuan)置(Zhi)Transposed Convolution转(Zhuan)置(Zhi)卷(Juan)积(Ji)Trial And Error试(Shi)错(Cuo)Trigram三(San)元(Yuan)语(Yu)法(Fa)Turing Machine图(Tu)灵(Ling)机(Ji)Underfitting欠(Qian)拟(Ni)合(He)Undersampling欠(Qian)采(Cai)样(Yang)Undirected Graphical Model无(Wu)向(Xiang)图(Tu)模(Mo)型(Xing)Uniform Distribution均(Jun)匀(Yun)分(Fen)布(Bu)Unigram一(Yi)元(Yuan)语(Yu)法(Fa)Unit单(Dan)元(Yuan)Universal Approximation Theorem通(Tong)用(Yong)近(Jin)似(Si)定(Ding)理(Li)Universal Approximator通(Tong)用(Yong)近(Jin)似(Si)器(Qi)Universal Function Approximator通(Tong)用(Yong)函(Han)数(Shu)近(Jin)似(Si)器(Qi)Unknown Token未(Wei)知(Zhi)词(Ci)元(Yuan)Unsupervised Layer-Wise Training无(Wu)监(Jian)督(Du)逐(Zhu)层(Ceng)训(Xun)练(Lian)Unsupervised Learning无(Wu)监(Jian)督(Du)学(Xue)习(Xi)Update Gate更(Geng)新(Xin)门(Men)Upsampling上(Shang)采(Cai)样(Yang)V-StructureV型(Xing)结(Jie)构(Gou)Validation Set验(Yan)证(Zheng)集(Ji)Validity Index有(You)效(Xiao)性(Xing)指(Zhi)标(Biao)Value Function Approximation值(Zhi)函(Han)数(Shu)近(Jin)似(Si)Value Iteration值(Zhi)迭(Die)代(Dai)Vanishing Gradient Problem梯(Ti)度(Du)消(Xiao)失(Shi)问(Wen)题(Ti)Vapnik-Chervonenkis DimensionVC维(Wei)Variable Elimination变(Bian)量(Liang)消(Xiao)去(Qu)Variance方(Fang)差(Cha)Variational Autoencoder变(Bian)分(Fen)自(Zi)编(Bian)码(Ma)器(Qi)Variational Inference变(Bian)分(Fen)推(Tui)断(Duan)Vector向(Xiang)量(Liang)Vector Space Model向(Xiang)量(Liang)空(Kong)间(Jian)模(Mo)型(Xing)Version Space版(Ban)本(Ben)空(Kong)间(Jian)Viterbi Algorithm维(Wei)特(Te)比(Bi)算(Suan)法(Fa)Vocabulary词(Ci)表(Biao)Warp线(Xian)程(Cheng)束(Shu)Weak Learner弱(Ruo)学(Xue)习(Xi)器(Qi)Weakly Supervised Learning弱(Ruo)监(Jian)督(Du)学(Xue)习(Xi)Weight权(Quan)重(Zhong)Weight Decay权(Quan)重(Zhong)衰(Shuai)减(Jian)Weight Sharing权(Quan)共(Gong)享(Xiang)Weighted Voting加(Jia)权(Quan)投(Tou)票(Piao)Whitening白(Bai)化(Hua)Winner-Take-All胜(Sheng)者(Zhe)通(Tong)吃(Chi)Within-Class Scatter Matrix类(Lei)内(Nei)散(San)度(Du)矩(Ju)阵(Zhen)Word Embedding词(Ci)嵌(Qian)入(Ru)Word Sense Disambiguation词(Ci)义(Yi)消(Xiao)歧(Qi)Word Vector词(Ci)向(Xiang)量(Liang)Zero Padding零(Ling)填(Tian)充(Chong)Zero-Shot Learning零(Ling)试(Shi)学(Xue)习(Xi)Zipf's Law齐(Qi)普(Pu)夫(Fu)定(Ding)律(Lv)来(Lai)源(Yuan):人(Ren)工(Gong)智(Zhi)能(Neng)AI技(Ji)术(Shu)
展望下半年,中汽协常务副会长兼秘书长付炳锋表示,宏观经济温和回暖逐渐向汽车市场传导,新能源汽车和汽车出口的良好表现有效拉动了市场增长,且伴随政策效应持续显现,汽车市场消费潜力将进一步释放,有助于推动行业全年实现稳定增长。但也要看到,当前外部环境依然复杂,一些结构性问题依然突出,消费需求依然不足,行业运行仍面临较大压力,公司经营仍有诸多挑战,需要保持政策的稳定与可预期,助力行业平稳运行。7月1日,在某社交平台上,一位博主讲述了自己在云南吃“见手青”中毒的经历,她称自己中毒治疗至今已一个月,“唯一没有改善的就是我的眼睛,从始至终都很模糊,尤其一到晚上,视力真的很差,稍微光暗一点就看不清楚。”该博主还表示,“如果我知道后续是这样的结果,对身体有这么大损害,我绝对不会吃。”热99谤别6久久精品全文阅读冲热99谤别6久久精品小说无弹窗...
相较于需要重人力资源投入的商业模式人形机器人公司的预期毛利率将高出许多边际成本递减效应也会非常强营收规模的天花板远高于传统工业机器人行业所以我预计人形机器人赛道有可能会出现数百亿人民币及以上估值的一些巨头公司而大部分传统工业机器人公司的估值都在50亿人民币以内