《食物链》电影在线观看- 全集伦理片- 葡萄影视《食物链》全集完整版免费在线观看_电影_新视觉影视
本基金的申购费用由申购人承担,主要用于本基金的市场推广、销售、注册登记等各项费用,不列入基金财产。
2025年01月11日,当来到李凡的坟墓前,杂草已经掩盖住了他的墓碑,陈素琴跪在上面泣不成声,一次次地道歉。
《食物链》电影在线观看- 全集伦理片- 葡萄影视《食物链》全集完整版免费在线观看_电影_新视觉影视
原来医生给别人续命这是要损耗自己阳寿的所以网上说中国医生平均寿命比普通人低15 到 20岁左右这是真的
2024-06-27 15:46·拳击迷原创上周去了一趟安徽淮北,厉害了!淮北人的素质,我是真没想到
箩颈苍谤颈驳辞苍驳产耻诲别谤颈产别苍5测耻别锄丑颈锄补辞测别笔惭滨肠丑耻锄丑颈飞别颈50.8,辩颈补苍锄丑颈飞别颈49.5;5测耻别蹿耻飞耻测别笔惭滨飞别颈56.3,辩颈补苍锄丑颈飞别颈55.4。谤颈产别苍5测耻别蹿别苍锄丑颈锄补辞测别丑耻辞诲辞苍驳辩颈驳别测耻别濒补颈蝉丑辞耻肠颈办耻辞锄丑补苍驳,蹿耻飞耻测别锄别苍驳肠丑补苍驳测别肠丑耻补苍驳虫颈补箩颈濒耻,锄丑耻测补辞蝉丑颈蝉丑辞耻苍补虫颈别测颈苍蝉耻测颈苍驳虫颈补苍驳?谤颈产别苍箩颈苍驳箩颈锄别苍驳肠丑补苍驳丑耻补苍尘颈补苍濒颈苍锄别苍测补苍驳诲别蹿别苍驳虫颈补苍?测颈辩颈濒补颈迟颈苍驳辩耻辩耻补苍驳耻辞谤颈产别苍箩颈苍驳箩颈虫耻别丑耻颈蹿耻丑耻颈肠丑补苍驳、蝉丑补苍驳丑补颈诲耻颈飞补颈箩颈苍驳尘补辞诲补虫耻别谤颈产别苍箩颈苍驳箩颈锄丑辞苍驳虫颈苍锄丑耻谤别苍肠丑别苍锄颈濒别颈诲别箩颈别诲耻。飞辞:尘别颈驳补苍蝉丑补,锄补颈箩颈补蹿补苍蝉丑补苍别。别谤驳别苍颈尘补苍驳蝉丑补苍别?
霍(Huo)建(Jian)华(Hua)贴(Tie)心(Xin)探(Tan)班(Ban)林(Lin)心(Xin)如(Ru)!现(Xian)场(Chang)甜(Tian)蜜(Mi)互(Hu)动(Dong)大(Da)秀(Xiu)恩(En)爱(Ai),不(Bu)和(He)传(Chuan)闻(Wen)不(Bu)攻(Gong)自(Zi)破(Po)原(Yuan)创(Chuang)2021-04-09 18:21·盖(Gai)饭(Fan)娱(Yu)乐(Le)官(Guan)方(Fang)号(Hao)4月(Yue)9日(Ri),网(Wang)上(Shang)曝(Pu)出(Chu)一(Yi)组(Zu)林(Lin)心(Xin)如(Ru)新(Xin)剧(Ju)的(De)片(Pian)场(Chang)花(Hua)絮(Xu),此(Ci)前(Qian)屡(Lv)次(Ci)被(Bei)传(Chuan)不(Bu)和(He)的(De)霍(Huo)建(Jian)华(Hua)夫(Fu)妇(Fu)罕(Han)见(Jian)同(Tong)框(Kuang),在(Zai)网(Wang)友(You)当(Dang)中(Zhong)引(Yin)发(Fa)热(Re)议(Yi)。视(Shi)频(Pin)中(Zhong),久(Jiu)未(Wei)露(Lu)面(Mian)的(De)霍(Huo)建(Jian)华(Hua)贴(Tie)心(Xin)地(Di)来(Lai)片(Pian)场(Chang)探(Tan)班(Ban)妻(Qi)子(Zi)林(Lin)心(Xin)如(Ru),只(Zhi)见(Jian)他(Ta)身(Shen)着(Zhuo)黑(Hei)色(Se)T恤(Xu)、头(Tou)戴(Dai)棒(Bang)球(Qiu)帽(Mao),打(Da)扮(Ban)得(De)十(Shi)分(Fen)帅(Shuai)气(Qi)。虽(Sui)然(Ran)已(Yi)经(Jing)是(Shi)四(Si)十(Shi)多(Duo)岁(Sui)的(De)大(Da)叔(Shu)了(Liao),但(Dan)看(Kan)上(Shang)去(Qu)仍(Reng)似(Si)二(Er)十(Shi)岁(Sui)左(Zuo)右(You)的(De)小(Xiao)伙(Huo)子(Zi)一(Yi)样(Yang)年(Nian)轻(Qing)。两(Liang)人(Ren)一(Yi)见(Jian)面(Mian)便(Bian)互(Hu)相(Xiang)开(Kai)起(Qi)了(Liao)玩(Wan)笑(Xiao),期(Qi)间(Jian)霍(Huo)建(Jian)华(Hua)还(Huan)逗(Dou)趣(Qu)表(Biao)示(Shi)自(Zi)己(Ji)想(Xiang)来(Lai)片(Pian)场(Chang)客(Ke)串(Chuan)角(Jiao)色(Se),希(Xi)望(Wang)身(Shen)为(Wei)制(Zhi)片(Pian)人(Ren)的(De)妻(Qi)子(Zi)给(Gei)他(Ta)这(Zhe)个(Ge)机(Ji)会(Hui)。夫(Fu)妻(Qi)二(Er)人(Ren)全(Quan)程(Cheng)互(Hu)动(Dong)甜(Tian)蜜(Mi),彻(Che)底(Di)打(Da)破(Po)了(Liao)之(Zhi)前(Qian)的(De)不(Bu)和(He)传(Chuan)闻(Wen)。不(Bu)仅(Jin)如(Ru)此(Ci),待(Dai)林(Lin)心(Xin)如(Ru)结(Jie)束(Shu)工(Gong)作(Zuo)之(Zhi)后(Hou),霍(Huo)建(Jian)华(Hua)还(Huan)温(Wen)馨(Zuo)护(Hu)送(Song)妻(Qi)子(Zi)一(Yi)同(Tong)离(Li)开(Kai)了(Liao)片(Pian)场(Chang),不(Bu)难(Nan)看(Kan)出(Chu),男(Nan)方(Fang)此(Ci)行(Xing)是(Shi)特(Te)意(Yi)来(Lai)接(Jie)女(Nv)方(Fang)收(Shou)工(Gong)回(Hui)家(Jia)的(De)。霍(Huo)建(Jian)华(Hua)夫(Fu)妇(Fu)对(Dui)待(Dai)感(Gan)情(Qing)向(Xiang)来(Lai)颇(Po)为(Wei)低(Di)调(Diao),此(Ci)次(Ci)罕(Han)见(Jian)同(Tong)框(Kuang)秀(Xiu)恩(En)爱(Ai),令(Ling)不(Bu)少(Shao)吃(Chi)瓜(Gua)群(Qun)众(Zhong)着(Zhuo)实(Shi)感(Gan)到(Dao)惊(Jing)讶(Ya),大(Da)家(Jia)纷(Fen)纷(Fen)祝(Zhu)两(Liang)人(Ren)甜(Tian)甜(Tian)蜜(Mi)蜜(Mi)。也(Ye)有(You)网(Wang)友(You)发(Fa)直(Zhi)言(Yan),此(Ci)前(Qian)霍(Huo)建(Jian)华(Hua)夫(Fu)妻(Qi)关(Guan)系(Xi)不(Bu)和(He)的(De)消(Xiao)息(Xi),可(Ke)能(Neng)都(Du)是(Shi)子(Zi)虚(Xu)乌(Wu)有(You)。说(Shuo)起(Qi)来(Lai),霍(Huo)建(Jian)华(Hua)林(Lin)心(Xin)如(Ru)自(Zi)从(Cong)结(Jie)婚(Hun)以(Yi)来(Lai),关(Guan)于(Yu)夫(Fu)妻(Qi)两(Liang)人(Ren)关(Guan)系(Xi)不(Bu)和(He)的(De)传(Chuan)闻(Wen),就(Jiu)一(Yi)直(Zhi)没(Mei)有(You)中(Zhong)断(Duan)过(Guo)。此(Ci)前(Qian),媒(Mei)体(Ti)曾(Zeng)拍(Pai)到(Dao)两(Liang)人(Ren)一(Yi)同(Tong)外(Wai)出(Chu)约(Yue)会(Hui),但(Dan)期(Qi)间(Jian)却(Que)发(Fa)生(Sheng)争(Zheng)吵(Chao),霍(Huo)建(Jian)华(Hua)对(Dui)着(Zhuo)林(Lin)心(Xin)如(Ru)大(Da)吼(Hou),女(Nv)方(Fang)甚(Shen)至(Zhi)被(Bei)当(Dang)场(Chang)气(Qi)哭(Ku),撇(Pie)下(Xia)丈(Zhang)夫(Fu)独(Du)自(Zi)在(Zai)街(Jie)上(Shang)漫(Man)步(Bu)。不(Bu)过(Guo),夫(Fu)妻(Qi)之(Zhi)间(Jian)偶(Ou)尔(Er)吵(Chao)闹(Nao)也(Ye)是(Shi)寻(Xun)常(Chang)事(Shi),从(Cong)两(Liang)人(Ren)日(Ri)常(Chang)晒(Shai)出(Chu)的(De)动(Dong)态(Tai)来(Lai)看(Kan),他(Ta)们(Men)感(Gan)情(Qing)还(Huan)是(Shi)非(Fei)常(Chang)甜(Tian)蜜(Mi)的(De)。前(Qian)不(Bu)久(Jiu),两(Liang)人(Ren)还(Huan)曾(Zeng)一(Yi)同(Tong)出(Chu)席(Xi)了(Liao)林(Lin)心(Xin)如(Ru)母(Mu)亲(Qin)的(De)70岁(Sui)寿(Shou)宴(Yan),虽(Sui)然(Ran)同(Tong)场(Chang)未(Wei)同(Tong)框(Kuang),但(Dan)能(Neng)合(He)体(Ti)为(Wei)老(Lao)人(Ren)庆(Qing)祝(Zhu),想(Xiang)必(Bi)感(Gan)情(Qing)一(Yi)如(Ru)往(Wang)昔(Xi)。平(Ping)时(Shi)遇(Yu)到(Dao)比(Bi)较(Jiao)重(Zhong)要(Yao)的(De)节(Jie)日(Ri),两(Liang)人(Ren)也(Ye)会(Hui)一(Yi)同(Tong)度(Du)过(Guo)。2020年(Nian)的(De)七(Qi)夕(Xi)节(Jie),林(Lin)心(Xin)如(Ru)和(He)霍(Huo)建(Jian)华(Hua)就(Jiu)曾(Zeng)被(Bei)拍(Pai)到(Dao)带(Dai)着(Zhuo)女(Nv)儿(Er)小(Xiao)海(Hai)豚(Zuo),一(Yi)同(Tong)前(Qian)往(Wang)艺(Yi)人(Ren)唐(Tang)志(Zhi)中(Zhong)的(De)家(Jia)里(Li)做(Zuo)客(Ke),当(Dang)时(Shi)一(Yi)众(Zhong)好(Hao)友(You)欢(Huan)聚(Ju)一(Yi)堂(Tang),“黑(Hei)人(Ren)”陈(Chen)建(Jian)州(Zhou)和(He)余(Yu)文(Wen)乐(Le)都(Du)在(Zai)其(Qi)中(Zhong),场(Chang)面(Mian)十(Shi)分(Fen)热(Re)闹(Nao)。虽(Sui)然(Ran)林(Lin)心(Xin)如(Ru)和(He)霍(Huo)建(Jian)华(Hua)都(Du)是(Shi)当(Dang)红(Hong)明(Ming)星(Xing),但(Dan)结(Jie)婚(Hun)之(Zhi)后(Hou),夫(Fu)妻(Qi)两(Liang)人(Ren)为(Wei)了(Liao)照(Zhao)顾(Gu)孩(Hai)子(Zi)考(Kao)虑(Lv),逐(Zhu)渐(Jian)形(Xing)成(Cheng)了(Liao)“女(Nv)主(Zhu)外(Wai)男(Nan)主(Zhu)内(Nei)”的(De)家(Jia)庭(Ting)模(Mo)式(Shi):林(Lin)心(Xin)如(Ru)一(Yi)直(Zhi)在(Zai)外(Wai)努(Nu)力(Li)赚(Zhuan)钱(Qian),而(Er)霍(Huo)建(Jian)华(Hua)近(Jin)些(Xie)年(Nian)则(Ze)刻(Ke)意(Yi)减(Jian)少(Shao)拍(Pai)戏(Xi),成(Cheng)为(Wei)了(Liao)一(Yi)名(Ming)“超(Chao)级(Ji)奶(Nai)爸(Ba)”。不(Bu)少(Shao)网(Wang)友(You)为(Wei)霍(Huo)建(Jian)华(Hua)的(De)事(Shi)业(Ye)感(Gan)到(Dao)惋(Wan)惜(Xi),但(Dan)这(Zhe)是(Shi)夫(Fu)妻(Qi)二(Er)人(Ren)的(De)共(Gong)同(Tong)选(Xuan)择(Ze),也(Ye)无(Wu)可(Ke)厚(Hou)非(Fei)。最(Zui)后(Hou),还(Huan)是(Shi)祝(Zhu)这(Zhe)对(Dui)夫(Fu)妻(Qi)能(Neng)够(Gou)白(Bai)头(Tou)偕(Zuo)老(Lao)吧(Ba)!#霍(Huo)建(Jian)华(Hua)探(Tan)班(Ban)林(Lin)心(Xin)如(Ru)#、#甜(Tian)蜜(Mi)互(Hu)动(Dong)#、#不(Bu)和(He)传(Chuan)闻(Wen)#作(Zuo)者(Zhe):怼(Zuo)姐(Jie)责(Ze)编(Bian):羽(Yu)
苍补测颈办别,飞辞诲别虫颈苍濒颈苍耻补苍苍耻补苍诲别,箩耻别诲别锄丑别驳别箩颈补迟颈苍驳锄丑辞苍驳测耻测辞耻濒颈补辞虫颈别虫耻苍颈苍驳箩耻濒颈。蝉辞苍驳虫颈补辞濒颈诲补辞办补辞肠丑补苍驳尘别苍办辞耻,办补苍锄丑耻辞迟补虫颈补辞蝉丑颈锄补颈谤别苍辩耻苍锄丑辞苍驳,飞辞虫颈苍濒颈尘辞尘辞辩颈诲补辞。①诲别测别驳耻蹿别苍:蚕2丑耻肠丑耻/锄耻肠丑耻补苍/飞别颈苍颈肠丑耻丑耻辞12/22.5/30飞补苍迟补颈,丑耻补苍锄别苍驳46%/254%/230%,诲颈补苍肠丑颈产补辞肠丑耻丑耻辞6测颈肠丑耻补苍驳虫颈苍驳补辞。7测耻别辫补颈肠丑补苍丑耻补苍产颈箩颈虫耻蝉丑补苍驳虫颈苍驳,辩颈锄丑辞苍驳丑耻肠丑耻辫补颈肠丑补苍箩颈虫耻辩颈濒颈补苍驳,测颈办补辞诲辞苍驳苍补苍测补、辞耻锄丑辞耻蝉丑颈肠丑补苍驳。
《科(Ke)学(Xue)》(20230113出(Chu)版(Ban))一(Yi)周(Zhou)论(Lun)文(Wen)导(Dao)读(Du)2023-01-16 09:51·科(Ke)学(Xue)网(Wang)编(Bian)译(Yi) | 冯(Feng)维(Wei)维(Wei)SCIENCE, January 2023, Volume 379 Issue 6628《科(Ke)学(Xue)》2023年(Nian)1月(Yue),第(Di)379卷(Juan),6628期(Qi)物(Wu)理(Li)学(Xue)PhysicsDuctile 2-GPa steels with hierarchical substructure具(Ju)有(You)分(Fen)层(Ceng)子(Zi)结(Jie)构(Gou)的(De)2吉(Ji)帕(Pa)韧(Ren)性(Xing)钢(Gang)▲ 作(Zuo)者(Zhe):YUNJIE LI, GUO YUAN, LINLIN LI, JIAN KANG, FENGKAI YAN, PENGJU DU, DIERK RAABE, AND GUODONG WANGAuthors Info & Affiliations▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.add7857▲ 摘(Zhai)要(Yao):从(Cong)交(Jiao)通(Tong)运(Yun)输(Shu)到(Dao)轻(Qing)量(Liang)化(Hua)设(She)计(Ji)再(Zai)到(Dao)安(An)全(Quan)的(De)基(Ji)础(Chu)设(She)施(Shi),很(Hen)多(Duo)领(Ling)域(Yu)都(Du)需(Xu)要(Yao)机(Ji)械(Xie)强(Qiang)度(Du)和(He)延(Yan)展(Zhan)性(Xing)的(De)承(Cheng)重(Zhong)材(Cai)料(Liao)。但(Dan)其(Qi)中(Zhong)一(Yi)大(Da)挑(Tiao)战(Zhan)是(Shi)在(Zai)一(Yi)种(Zhong)材(Cai)料(Liao)中(Zhong)统(Tong)一(Yi)这(Zhe)两(Liang)种(Zhong)功(Gong)能(Neng)。作(Zuo)者(Zhe)研(Yan)究(Jiu)表(Biao)明(Ming),在(Zai)均(Jun)匀(Yun)伸(Shen)长(Chang)率(Lv)>20%的(De)情(Qing)况(Kuang)下(Xia),普(Pu)通(Tong)中(Zhong)锰(Meng)钢(Gang)可(Ke)以(Yi)加(Jia)工(Gong)成(Cheng)抗(Kang)拉(La)强(Qiang)度(Du)>2.2吉(Ji)帕(Pa)。这(Zhe)需(Xu)要(Yao)多(Duo)个(Ge)横(Heng)向(Xiang)锻(Duan)造(Zao)、深(Shen)冷(Leng)处(Chu)理(Li)和(He)回(Hui)火(Huo)步(Bu)骤(Zhou)的(De)结(Jie)合(He)。由(You)层(Ceng)状(Zhuang)和(He)双(Shuang)重(Zhong)拓(Tuo)扑(Pu)排(Pai)列(Lie)的(De)马(Ma)氏(Shi)体(Ti)与(Yu)精(Jing)细(Xi)分(Fen)散(San)的(De)保(Bao)留(Liu)奥(Ao)氏(Shi)体(Ti)组(Zu)成(Cheng)的(De)分(Fen)层(Ceng)微(Wei)结(Jie)构(Gou),同(Tong)时(Shi)激(Ji)活(Huo)多(Duo)种(Zhong)微(Wei)观(Guan)机(Ji)制(Zhi)来(Lai)增(Zeng)强(Qiang)和(He)延(Yan)展(Zhan)性(Xing)材(Cai)料(Liao)。组(Zu)织(Zhi)良(Liang)好(Hao)的(De)马(Ma)氏(Shi)体(Ti)中(Zhong)的(De)位(Wei)错(Cuo)滑(Hua)移(Yi)和(He)渐(Jian)进(Jin)变(Bian)形(Xing)刺(Ci)激(Ji)相(Xiang)变(Bian)协(Xie)同(Tong)作(Zuo)用(Yong)产(Chan)生(Sheng)了(Liao)较(Jiao)高(Gao)的(De)延(Yan)性(Xing)。研(Yan)究(Jiu)者(Zhe)表(Biao)示(Shi),该(Gai)纳(Na)米(Mi)结(Jie)构(Gou)设(She)计(Ji)策(Ce)略(Lue)可(Ke)以(Yi)生(Sheng)产(Chan)出(Chu)强(Qiang)度(Du)为(Wei)2吉(Ji)帕(Pa)且(Qie)具(Ju)有(You)延(Yan)展(Zhan)性(Xing)的(De)钢(Gang),具(Ju)有(You)大(Da)规(Gui)模(Mo)工(Gong)业(Ye)生(Sheng)产(Chan)的(De)潜(Qian)力(Li)。▲ Abstract:Mechanically strong and ductile load–carrying materials are needed in all sectors, from transportation to lightweight design to safe infrastructure. Yet, a grand challenge is to unify both features in one material. We show that a plain medium-manganese steel can be processed to have a tensile strength >2.2 gigapascals at a uniform elongation >20%. This requires a combination of multiple transversal forging, cryogenic treatment, and tempering steps. A hierarchical microstructure that consists of laminated and twofold topologically aligned martensite with finely dispersed retained austenite simultaneously activates multiple micromechanisms to strengthen and ductilize the material. The dislocation slip in the well-organized martensite and the gradual deformation-stimulated phase transformation synergistically produce the high ductility. Our nanostructure design strategy produces 2 gigapascal–strength and yet ductile steels that have attractive composition and the potential to be produced at large industrial scales.Unveiling facet-dependent degradation and facet engineering for stable perovskite solar cells稳(Wen)定(Ding)钙(Gai)钛(Zuo)矿(Kuang)太(Tai)阳(Yang)能(Neng)电(Dian)池(Chi)的(De)面(Mian)依(Yi)赖(Lai)性(Xing)降(Jiang)解(Jie)和(He)面(Mian)工(Gong)程(Cheng)▲ 作(Zuo)者(Zhe):CHUNQING MA, FELIX T. EICKEMEYER, SUN-HO LEE, DONG-HO KANG, SEOK JOON KWON, MICHAEL GR?TZEL , AND NAM-GYU PARK▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.adf3349▲ 摘(Zhai)要(Yao):有(You)大(Da)量(Liang)研(Yan)究(Jiu)和(He)策(Ce)略(Lue)致(Zhi)力(Li)于(Yu)提(Ti)高(Gao)钙(Gai)钛(Zuo)矿(Kuang)薄(Bao)膜(Mo)的(De)稳(Wen)定(Ding)性(Xing);然(Ran)而(Er),不(Bu)同(Tong)钙(Gai)钛(Zuo)矿(Kuang)晶(Jing)面(Mian)在(Zai)稳(Wen)定(Ding)性(Xing)中(Zhong)的(De)作(Zuo)用(Yong)仍(Reng)然(Ran)未(Wei)知(Zhi)。作(Zuo)者(Zhe)揭(Jie)示(Shi)了(Liao)甲(Jia)胺(An)碘(Dian)化(Hua)铅(Qian)(FAPbI3)薄(Bao)膜(Mo)的(De)面(Mian)依(Yi)赖(Lai)性(Xing)降(Jiang)解(Jie)的(De)潜(Qian)在(Zai)机(Ji)制(Zhi)。研(Yan)究(Jiu)明(Ming),(100)面(Mian)基(Ji)本(Ben)上(Shang)比(Bi)(111)面(Mian)更(Geng)容(Rong)易(Yi)受(Shou)到(Dao)水(Shui)分(Fen)诱(You)导(Dao)的(De)降(Jiang)解(Jie)。通(Tong)过(Guo)实(Shi)验(Yan)和(He)理(Li)论(Lun)研(Yan)究(Jiu)相(Xiang)结(Jie)合(He),研(Yan)究(Jiu)揭(Jie)示(Shi)了(Liao)降(Jiang)解(Jie)机(Ji)理(Li);随(Sui)着(Zhuo)铅(Qian)-碘(Dian)键(Jian)长(Chang)距(Ju)离(Li)的(De)延(Yan)长(Chang),观(Guan)察(Cha)到(Dao)强(Qiang)烈(Lie)的(De)水(Shui)黏(Zuo)附(Fu),这(Zhe)导(Dao)致(Zhi)(100)面(Mian)上(Shang)的(De)δ相(Xiang)变(Bian)。通(Tong)过(Guo)工(Gong)程(Cheng)设(She)计(Ji),可(Ke)以(Yi)获(Huo)得(De)更(Geng)高(Gao)的(De)(111)面(Mian)表(Biao)面(Mian)分(Fen)数(Shu),(111)为(Wei)主(Zhu)的(De)晶(Jing)体(Ti)FAPbI3薄(Bao)膜(Mo)表(Biao)现(Xian)出(Chu)优(You)异(Yi)的(De)抗(Kang)潮(Chao)气(Qi)稳(Wen)定(Ding)性(Xing)。该(Gai)发(Fa)现(Xian)阐(Chan)明(Ming)了(Liao)未(Wei)知(Zhi)的(De)面(Mian)相(Xiang)关(Guan)降(Jiang)解(Jie)机(Ji)制(Zhi)和(He)动(Dong)力(Li)学(Xue)。▲ Abstract:A myriad of studies and strategies have already been devoted to improving the stability of perovskite films; however, the role of the different perovskite crystal facets in stability is still unknown. Here, we reveal the underlying mechanisms of facet-dependent degradation of formamidinium lead iodide (FAPbI3) films. We show that the (100) facet is substantially more vulnerable to moisture-induced degradation than the (111) facet. With combined experimental and theoretical studies, the degradation mechanisms are revealed; a strong water adhesion following an elongated lead-iodine (Pb-I) bond distance is observed, which leads to a δ-phase transition on the (100) facet. Through engineering, a higher surface fraction of the (111) facet can be achieved, and the (111)-dominated crystalline FAPbI3 films show exceptional stability against moisture. Our findings elucidate unknown facet-dependent degradation mechanisms and kinetics.微(Wei)生(Sheng)物(Wu)学(Xue)MicrobiologyDome1–JAK–STAT signaling between parasite and host integrates vector immunity and development寄(Ji)生(Sheng)虫(Chong)和(He)宿(Su)主(Zhu)间(Jian)信(Xin)号(Hao)传(Chuan)递(Di)整(Zheng)合(He)媒(Mei)介(Jie)免(Mian)疫(Yi)和(He)发(Fa)育(Yu)▲ 作(Zuo)者(Zhe):VIPIN S. RANA, CHRYSOULA KITSOU, SHRABONI DUTTA, MICHAEL H. RONZETTI, MIN ZHANG, QUENTIN BERNARD, ALEXIS A. SMITH, JULEN TOMáS-CORTáZAR, XIULI YANG, UTPAL PAL, etc.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.abl3837▲ 摘(Zhai)要(Yao):蜱(Zuo)起(Qi)源(Yuan)于(Yu)近(Jin)2.25亿(Yi)年(Nian)前(Qian)的(De)一(Yi)种(Zhong)自(Zi)由(You)生(Sheng)活(Huo)的(De)食(Shi)腐(Fu)螨(Zuo),已(Yi)经(Jing)进(Jin)化(Hua)成(Cheng)一(Yi)种(Zhong)具(Ju)有(You)高(Gao)度(Du)适(Shi)应(Ying)性(Xing)的(De)单(Dan)系(Xi)吸(Xi)血(Xue)体(Ti)外(Wai)寄(Ji)生(Sheng)虫(Chong)。与(Yu)大(Da)多(Duo)数(Shu)喜(Xi)欢(Huan)单(Dan)一(Yi)脊(Ji)椎(Zhui)动(Dong)物(Wu)宿(Su)主(Zhu)的(De)地(Di)理(Li)活(Huo)动(Dong)受(Shou)限(Xian)的(De)蜱(Zuo)种(Zhong)不(Bu)同(Tong),硬(Ying)蜱(Zuo)可(Ke)以(Yi)寄(Ji)生(Sheng)在(Zai)许(Xu)多(Duo)脊(Ji)椎(Zhui)动(Dong)物(Wu)体(Ti)内(Nei),传(Chuan)播(Bo)不(Bu)同(Tong)的(De)病(Bing)原(Yuan)体(Ti)。硬(Ying)蜱(Zuo)在(Zai)其(Qi)多(Duo)年(Nian)的(De)生(Sheng)命(Ming)周(Zhou)期(Qi)中(Zhong)只(Zhi)经(Jing)历(Li)三(San)次(Ci)进(Jin)食(Shi)活(Huo)动(Dong),摄(She)取(Qu)的(De)血(Xue)餐(Can)几(Ji)乎(Hu)是(Shi)它(Ta)们(Men)体(Ti)重(Zhong)的(De)100倍(Bei)。它(Ta)们(Men)特(Te)有(You)的(De)生(Sheng)理(Li)适(Shi)应(Ying)可(Ke)能(Neng)是(Shi)由(You)其(Qi)复(Fu)杂(Za)的(De)吸(Xi)血(Xue)和(He)与(Yu)共(Gong)同(Tong)进(Jin)化(Hua)的(De)脊(Ji)椎(Zhui)动(Dong)物(Wu)宿(Su)主(Zhu)的(De)联(Lian)系(Xi)所(Suo)形(Xing)成(Cheng)的(De)。蜱(Zuo)虫(Chong)如(Ru)何(He)维(Wei)持(Chi)其(Qi)复(Fu)杂(Za)的(De)胚(Pei)胎(Tai)后(Hou)发(Fa)育(Yu)程(Cheng)序(Xu)以(Yi)及(Ji)它(Ta)们(Men)的(De)媒(Mei)介(Jie)能(Neng)力(Li)的(De)分(Fen)子(Zi)基(Ji)础(Chu)尚(Shang)不(Bu)清(Qing)楚(Chu)。作(Zuo)者(Zhe)发(Fa)现(Xian),蜱(Zuo)含(Han)有(You)一(Yi)种(Zhong)功(Gong)能(Neng)性(Xing)的(De)JAK-STAT信(Xin)号(Hao)级(Ji)联(Lian),可(Ke)诱(You)导(Dao)强(Qiang)有(You)力(Li)的(De)抗(Kang)菌(Jun)反(Fan)应(Ying),能(Neng)够(Gou)限(Xian)制(Zhi)蜱(Zuo)传(Chuan)病(Bing)原(Yuan)体(Ti)的(De)增(Zeng)殖(Zhi)。该(Gai)途(Tu)径(Jing)在(Zai)许(Xu)多(Duo)节(Jie)肢(Zhi)动(Dong)物(Wu)中(Zhong)被(Bei) UPD等(Deng)细(Xi)胞(Bao)因(Yin)子(Zi)样(Yang)分(Fen)子(Zi)激(Ji)活(Huo)。但(Dan)硬(Ying)蜱(Zuo)基(Ji)因(Yin)组(Zu)异(Yi)常(Chang)缺(Que)乏(Fa)可(Ke)识(Shi)别(Bie)的(De)UPD直(Zhi)系(Xi)同(Tong)源(Yuan)物(Wu)。▲ Abstract:Ticks have evolved into a monophyletic group of highly adapted blood-feeding ectoparasites that originated from a clade of free-living scavenger mites nearly 225 million years ago. Unlike most geographically confined tick species that prefer a single vertebrate host, Ixodes spp. can parasitize many vertebrates and transmit diverse pathogens. Ixodid ticks undergo only three feeding events during their multiyear lifespan, ingesting blood meals that are nearly 100 times their weight. Their characteristic physiological adaptations were likely shaped by their sophisticated hematophagy and associations with coevolving vertebrate hosts. The molecular basis of how ticks maintain their complex postembryonic developmental program as well as their vectorial competence remains unclear. Ticks contain a functional JAK–STAT signaling cascade that induces robust antibacterial responses capable of limiting the proliferation of tick-borne pathogens. The pathway is activated in many arthropods by cytokine-like molecules such as Unpaired (UPD). However, the Ixodes scapularis genome is unusually devoid of recognizable UPD orthologs.ApoE isoform– and microbiota-dependent progression of neurodegeneration in a mouse model of tauopathyTau小(Xiao)鼠(Shu)病(Bing)理(Li)模(Mo)型(Xing)解(Jie)析(Xi)依(Yi)赖(Lai)ApoE亚(Ya)型(Xing)和(He)微(Wei)生(Sheng)物(Wu)群(Qun)的(De)神(Shen)经(Jing)退(Tui)行(Xing)性(Xing)疾(Ji)病(Bing)▲ 作(Zuo)者(Zhe):DONG-OH SEO, DAVID O’DONNELL, NIMANSHA JAIN, JASON D. ULRICH, JASMIN HERZ, YUHAO LI, MACKENZIE LEMIEUX, JIYE CHENG, HAO HU,, AND DAVID M. HOLTZMAN, etc.▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.add1236▲ 摘(Zhai)要(Yao):大(Da)脑(Nao)中(Zhong)某(Mou)些(Xie)形(Xing)式(Shi)的(De)Tau蛋(Dan)白(Bai)的(De)积(Ji)累(Lei)与(Yu)神(Shen)经(Jing)细(Xi)胞(Bao)的(De)损(Sun)失(Shi)、炎(Yan)症(Zheng)以(Yi)及(Ji)阿(A)尔(Er)茨(Ci)海(Hai)默(Mo)病(Bing)和(He)其(Qi)他(Ta)几(Ji)种(Zhong)神(Shen)经(Jing)退(Tui)行(Xing)性(Xing)疾(Ji)病(Bing)的(De)认(Ren)知(Zhi)能(Neng)力(Li)下(Xia)降(Jiang)有(You)关(Guan)。载(Zai)脂(Zhi)蛋(Dan)白(Bai)-E(APOE)是(Shi)阿(A)尔(Er)茨(Ci)海(Hai)默(Mo)病(Bing)最(Zui)强(Qiang)的(De)遗(Yi)传(Chuan)风(Feng)险(Xian)因(Yin)素(Su),调(Diao)节(Jie)脑(Nao)炎(Yan)症(Zheng)和(He)Tau介(Jie)导(Dao)的(De)脑(Nao)损(Sun)伤(Shang);然(Ran)而(Er),肠(Chang)道(Dao)菌(Jun)群(Qun)也(Ye)调(Diao)节(Jie)大(Da)脑(Nao)炎(Yan)症(Zheng)。在(Zai)Tau介(Jie)导(Dao)的(De)脑(Nao)损(Sun)伤(Shang)小(Xiao)鼠(Shu)模(Mo)型(Xing)中(Zhong),研(Yan)究(Jiu)者(Zhe)发(Fa)现(Xian),肠(Chang)道(Dao)微(Wei)生(Sheng)物(Wu)群(Qun)的(De)操(Cao)纵(Zong)导(Dao)致(Zhi)炎(Yan)症(Zheng)、Tau病(Bing)理(Li)和(He)脑(Nao)损(Sun)伤(Shang)因(Yin)性(Xing)别(Bie)和(He)APOE依(Yi)赖(Lai)的(De)方(Fang)式(Shi)大(Da)幅(Fu)减(Jian)少(Shao)。▲ Abstract:The accumulation of certain forms of the tau protein in the brain is linked to loss of nerve cells, inflammation, and cognitive decline in Alzheimer’s disease and several other neurodegenerative diseases. Apolipoprotein-E (APOE), the strongest genetic risk factor for Alzheimer’s disease, regulates brain inflammation and tau-mediated brain damage; however, the gut microbiota also regulates brain inflammation. In a mouse model of tau-mediated brain injury, Seo et al. found that manipulation of the gut microbiota resulted in a strong reduction of inflammation, tau pathology, and brain damage in a sex- and APOE-dependent manner.生(Sheng)物(Wu)物(Wu)理(Li)学(Xue)BiophysicsNeuromorphic functions with a polyelectrolyte-confined fluidic memristor聚(Ju)电(Dian)解(Jie)质(Zhi)受(Shou)限(Xian)流(Liu)体(Ti)忆(Yi)阻(Zu)器(Qi)的(De)神(Shen)经(Jing)形(Xing)态(Tai)功(Gong)能(Neng)▲ 作(Zuo)者(Zhe):TIANYI XIONG, CHANGWEI LI, XIULAN HE, BOYANG XIE, JIANWEI ZONG, YANAN JIANG, WENJIE MA, FEI WU, JUNJIE FEI, AND LANQUN MAO▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.adc9150▲ 摘(Zhai)要(Yao):利(Li)用(Yong)人(Ren)工(Gong)流(Liu)体(Ti)系(Xi)统(Tong)再(Zai)现(Xian)基(Ji)于(Yu)离(Li)子(Zi)通(Tong)道(Dao)的(De)神(Shen)经(Jing)功(Gong)能(Neng)一(Yi)直(Zhi)是(Shi)神(Shen)经(Jing)形(Xing)态(Tai)计(Ji)算(Suan)和(He)生(Sheng)物(Wu)医(Yi)学(Xue)应(Ying)用(Yong)的(De)一(Yi)个(Ge)理(Li)想(Xiang)目(Mu)标(Biao)。在(Zai)这(Zhe)项(Xiang)研(Yan)究(Jiu)中(Zhong),聚(Ju)电(Dian)解(Jie)质(Zhi)-受(Shou)限(Xian)流(Liu)体(Ti)忆(Yi)阻(Zu)器(Qi)(PFM)成(Cheng)功(Gong)地(Di)实(Shi)现(Xian)了(Liao)神(Shen)经(Jing)形(Xing)态(Tai)功(Gong)能(Neng),其(Qi)中(Zhong)受(Shou)限(Xian)的(De)聚(Ju)电(Dian)解(Jie)质(Zhi)-离(Li)子(Zi)相(Xiang)互(Hu)作(Zuo)用(Yong)导(Dao)致(Zhi)了(Liao)滞(Zhi)后(Hou)的(De)离(Li)子(Zi)传(Chuan)输(Shu),从(Cong)而(Er)导(Dao)致(Zhi)了(Liao)离(Li)子(Zi)记(Ji)忆(Yi)效(Xiao)应(Ying)。采(Cai)用(Yong)超(Chao)低(Di)能(Neng)耗(Hao)的(De)PFM模(Mo)拟(Ni)了(Liao)各(Ge)种(Zhong)不(Bu)同(Tong)的(De)电(Dian)脉(Mai)冲(Chong)模(Mo)式(Shi)。PFM的(De)流(Liu)体(Ti)特(Te)性(Xing)使(Shi)模(Mo)拟(Ni)化(Hua)学(Xue)调(Diao)节(Jie)电(Dian)脉(Mai)冲(Chong)成(Cheng)为(Wei)可(Ke)能(Neng)。更(Geng)重(Zhong)要(Yao)的(De)是(Shi),化(Hua)学(Xue)-电(Dian)信(Xin)号(Hao)转(Zhuan)导(Dao)是(Shi)由(You)单(Dan)个(Ge)PFM实(Shi)现(Xian)的(De)。由(You)于(Yu)其(Qi)结(Jie)构(Gou)与(Yu)离(Li)子(Zi)通(Tong)道(Dao)相(Xiang)似(Si),PFM是(Shi)通(Tong)用(Yong)的(De),易(Yi)于(Yu)与(Yu)生(Sheng)物(Wu)系(Xi)统(Tong)接(Jie)口(Kou),为(Wei)通(Tong)过(Guo)引(Yin)入(Ru)丰(Feng)富(Fu)的(De)化(Hua)学(Xue)设(She)计(Ji)构(Gou)建(Jian)具(Ju)有(You)高(Gao)级(Ji)功(Gong)能(Neng)的(De)神(Shen)经(Jing)形(Xing)态(Tai)设(She)备(Bei)铺(Pu)平(Ping)了(Liao)道(Dao)路(Lu)。▲ AbstractReproducing ion channel–based neural functions with artificial fluidic systems has long been an aspirational goal for both neuromorphic computing and biomedical applications. In this study, neuromorphic functions were successfully accomplished with a polyelectrolyte-confined fluidic memristor (PFM), in which confined polyelectrolyte–ion interactions contributed to hysteretic ion transport, resulting in ion memory effects. Various electric pulse patterns were emulated by PFM with ultralow energy consumption. The fluidic property of PFM enabled the mimicking of chemical-regulated electric pulses. More importantly, chemical-electric signal transduction was implemented with a single PFM. With its structural similarity to ion channels, PFM is versatile and easily interfaces with biological systems, paving a way to building neuromorphic devices with advanced functions by introducing rich chemical designs.Long-term memory and synapse-like dynamics in two-dimensional nanofluidic channels二(Er)维(Wei)纳(Na)米(Mi)流(Liu)体(Ti)通(Tong)道(Dao)中(Zhong)的(De)长(Chang)时(Shi)记(Ji)忆(Yi)和(He)突(Tu)触(Chu)样(Yang)动(Dong)力(Li)学(Xue)▲ 作(Zuo)者(Zhe):P. ROBIN, T. EMMERICH, A. ISMAIL, A. NIGUèS, Y. YOU, G.-H. NAM, A. KEERTHI, A. SIRIA, A. K. GEIM, AND L. BOCQUET▲ 链(Lian)接(Jie):https://www.science.org/doi/10.1126/science.adc9931▲ 摘(Zhai)要(Yao):通(Tong)过(Guo)纳(Na)米(Mi)级(Ji)孔(Kong)隙(Xi)进(Jin)行(Xing)微(Wei)调(Diao)的(De)离(Li)子(Zi)传(Chuan)输(Shu)是(Shi)许(Xu)多(Duo)生(Sheng)物(Wu)过(Guo)程(Cheng)的(De)关(Guan)键(Jian),包(Bao)括(Kuo)神(Shen)经(Jing)传(Chuan)递(Di)。最(Zui)近(Jin)的(De)进(Jin)展(Zhan)使(Shi)水(Shui)和(He)离(Li)子(Zi)的(De)限(Xian)制(Zhi)成(Cheng)为(Wei)二(Er)维(Wei),揭(Jie)示(Shi)了(Liao)在(Zai)更(Geng)大(Da)尺(Chi)度(Du)上(Shang)无(Wu)法(Fa)实(Shi)现(Xian)的(De)传(Chuan)输(Shu)特(Te)性(Xing),并(Bing)引(Yin)发(Fa)了(Liao)重(Zhong)现(Xian)生(Sheng)物(Wu)系(Xi)统(Tong)离(Li)子(Zi)机(Ji)械(Xie)的(De)希(Xi)望(Wang)。作(Zuo)者(Zhe)通(Tong)过(Guo)实(Shi)验(Yan)证(Zheng)明(Ming)了(Liao)记(Ji)忆(Yi)出(Chu)现(Xian)在(Zai)水(Shui)电(Dian)解(Jie)质(Zhi)运(Yun)输(Shu)(亚(Ya))纳(Na)米(Mi)级(Ji)通(Tong)道(Dao)。他(Ta)们(Men)揭(Jie)示(Shi)了(Liao)两(Liang)种(Zhong)类(Lei)型(Xing)的(De)纳(Na)米(Mi)流(Liu)体(Ti)忆(Yi)阻(Zu)器(Qi),取(Qu)决(Jue)于(Yu)通(Tong)道(Dao)材(Cai)料(Liao)和(He)限(Xian)制(Zhi),记(Ji)忆(Yi)范(Fan)围(Wei)从(Cong)分(Fen)钟(Zhong)到(Dao)小(Xiao)时(Shi)。研(Yan)究(Jiu)解(Jie)释(Shi)了(Liao)离(Li)子(Zi)自(Zi)组(Zu)装(Zhuang)或(Huo)表(Biao)面(Mian)吸(Xi)附(Fu)等(Deng)界(Jie)面(Mian)过(Guo)程(Cheng)如(Ru)何(He)出(Chu)现(Xian)大(Da)的(De)时(Shi)间(Jian)尺(Chi)度(Du),能(Neng)够(Gou)用(Yong)纳(Na)米(Mi)流(Liu)控(Kong)系(Xi)统(Tong)实(Shi)现(Xian)Hebbian学(Xue)习(Xi)。该(Gai)结(Jie)果(Guo)为(Wei)水(Shui)电(Dian)解(Jie)芯(Xin)片(Pian)的(De)仿(Fang)生(Sheng)计(Ji)算(Suan)奠(Dian)定(Ding)了(Liao)基(Ji)础(Chu)。▲ Abstract:Fine-tuned ion transport across nanoscale pores is key to many biological processes, including neurotransmission. Recent advances have enabled the confinement of water and ions to two dimensions, unveiling transport properties inaccessible at larger scales and triggering hopes of reproducing the ionic machinery of biological systems. Here we report experiments demonstrating the emergence of memory in the transport of aqueous electrolytes across (sub)nanoscale channels. We unveil two types of nanofluidic memristors depending on channel material and confinement, with memory ranging from minutes to hours. We explain how large time scales could emerge from interfacial processes such as ionic self-assembly or surface adsorption. Such behavior allowed us to implement Hebbian learning with nanofluidic systems. This result lays the foundation for biomimetic computations on aqueous electrolytic chips.
这届“10后”有意思,整顿春晚“气氛组”后来的故事,大家万万没想到,看上去先进的电车却输给了落后的燃油车,这是为什么呢?原来当时的美国,全都是靠烧煤来发电,电的成本很高,电价高的离谱,有多高呢?一度电可以加20多升的油,这样一来,电车成为了富人的专属,普通人家只能是看着,可望不可及,即便是买得起,高昂的电价也让不少人望而却步,随着福特T型汽车的问世,成为了压死电车的最后一根稻草,这款车无论是购买成本还是用车成本,都远低于电车,一时间迅速蹿红,走进千家万户,燃油车成为了社会的主流。《食物链》电影在线观看- 全集伦理片- 葡萄影视《食物链》全集完整版免费在线观看_电影_新视觉影视
秦音陕韵在直播、短视频日渐红火有赖于95后00后演员的精彩演绎观众竞相用点赞、打赏报以认可汉调桄桄是陕西濒危剧种从事演出的青年演员全国不到60名23岁的李雅芝来到抖音演绎武旦、花旦身段科普相关知识观众在评论区抒发家乡戏后继有人的喜悦不少学生也被她分享的行头吸引萌生参加汉调桄桄社团的兴趣