¡¶±õÆéÕæÐ÷¡·µçÓ°ÎÞɾ¼õÔÚÏß¹Û¿´-ÂúÒâµçÓ°Íø...±»´ó²®ÇÖ·¸»¹±»ÅÄÏÂӰƬµÄÎÒ¡ ±õÆéÕæÐ÷-Ƭ³¡´óʦ
ËýÇëÇóÎÂʵ³õ°ïËý£¬¿ÒÇóËûǧÍò²»ÒªÈÃËü³ÉΪһ¸öجÃΡ£
2024Äê12ÔÂ11ÈÕ£¬1.¡¶Äã¿´ÆðÀ´ºÃÏñºÜºÃ³Ô¡·
¡¶±õÆéÕæÐ÷¡·µçÓ°ÎÞɾ¼õÔÚÏß¹Û¿´-ÂúÒâµçÓ°Íø...±»´ó²®ÇÖ·¸»¹±»ÅÄÏÂӰƬµÄÎÒ¡ ±õÆéÕæÐ÷-Ƭ³¡´óʦ
ÎÒÃǾõµÃºÜÈȵÄÇé¿öÏÂΪÄÜÈÃ×ÔÉí¸üΪÊæÊÊ×Ü»áͨ¹ý³Ô±ù¹÷À´½µ½µÎÂ
ÉÂÎ÷úҵ£ºÇ°6ÔÂ×Ô²úúÏúÁ¿8537.3Íò¶Ö£¬Í¬±ÈÔö³¤3.11%£¨¼»ÖÝ¡¢±¦ÛæÇ°°ëÒ¹ÒõÓзÖÉ¢ÐÔÀ×ÕóÓêת¶àÔÆ£©
2015GREshuxuecihuizongjie2015-09-07 14:00¡¤funuowangGREshuxuekaoshizuinandejiushizhuanyeshuyu£¬zhiyaoninengzhidaozhexiezhuanyeshuyu£¬nakaoshiyinggaijiumeishimewentiliao¡£yixiashifunuoliuxuedezhuanjiaweidajiazongjiedeyixieGREshuxuecihui£¬xiwanghuiduidajiayousuobangzhu¡£yi¡¢suanshu-zhengshuIntegerzhengshu¡¢consecutive integerlianxuzhengshu¡¢positive whole numberzhengzhengshu¡¢negative whole numberfuzhengshu¡¢even integeroushu¡¢odd integerqishu¡¢real numbershishu¡¢divisoryueshu£¬chushu£¬yinzi¡¢multiplebeishu¡¢remainderyushu¡¢scoreershi¡¢quotientshang¡¢composite numberheshu¡¢prime numberzhishu¡¢prime factorzhiyinzi¡¢successivelianxude¡¢spreadfanwei¡¢constanthengdingbubiande¡£er¡¢fenshuNumeratorfenzi¡¢denominatorfenmu¡¢greatest common divisor/factorzuidagongyueshu¡¢least common multiplezuixiaogongbeishu¡¢common multiplegongbeishu¡¢common factorgongyinzi¡¢reciprocal/inversedaoshu¡¢mixed numberdaifenshu¡¢improper fractionjiafenshu¡¢proper fractionzhenfenshu¡¢vulgar fraction/common fractionputongfenshu¡¢simple fractionjianfenshu¡¢complex fractionfanfenshu¡¢reversiblekenide£¬kedaozhuande¡¢nearest whole percentzuijiejindebaifenshu¡£san¡¢xiaoshuDecimal placexiaoshuwei¡¢decimal pointxiaoshudian¡¢decimal fractionchunxiaoshu¡¢infinite decimalwuqiongxiaoshu¡¢recurring decimalxunhuanxiaoshu¡¢digitwei¡¢decimal systemshijinzhi¡¢units digitgewei¡¢tens digitshiweishu¡¢tenths unitshifen¡¢3-digit numbersanweishu¡¢quartilessifenweishu¡¢percentilesbaifenweishu¡¢inter-quartile rangesifenweicha¡¢negligiblekehuluebujide¡¢closest approximationzuixiangjinside¡¢calculate to three decimal placesjieguobaoliu3weixiaoshu¡¢approximatelydayue£¬jinsi¡¢estimationgusuan£¬jinsi¡£si¡¢shishuAbsolute valuejueduizhi¡¢nonzero numberfeilingshu¡¢natural numberziranshu¡¢positive numberzhengshu¡¢non-negativefeifude¡¢rationalyoulishu¡¢irrationalwulishu¡£wu¡¢biliCommon ratiogongbi¡¢direct proportionzhengbi¡¢percentbaifenbi¡¢account forzhan(bili)¡¢scatter-plotdianzhen¡¢scalebili£¬kedu¡£liu¡¢mihegenCardinaljishu¡¢ordinalxushu¡¢exponentzhishu£¬mi¡¢base/powerdishu/zhishu£¬mi¡¢radical sign/root signgenhao¡¢radicalsgenshi¡¢square rootpingfanggen¡¢cube-rootlifanggen¡¢productchengji¡¢sommon logarithmchangyongduishu¡£qi¡¢jiheSubsetziji¡¢proper subsetzhenziji¡¢unionheji¡¢intersectionjiaoji¡¢empty setkongji¡¢solution setjieji¡¢set of data/data setshujuji¡¢setsjihe¡¢nonemptyfeikongde¡¢mutually exclusivehuchide¡¢juxtapositionbinglie¡¢disjointbuxiangjiaode¡¢elementsyuansu¡¢eventshijian¡¢compound eventsfuheshijian¡¢independent eventsdulishijian¡¢sufficientchongfende¡¢Venn diagramsweientu¡¢the intersection of A and B£»AyuBdejiaoji¡¢the union of A and B£»AyuBdebingji¡¢the sum of A and B/the total of A and B£»AheBdehe¡£ba¡¢tongjiAveragepingjunshu¡¢meanpingjunshu¡¢maximumzuidashu¡¢minimumzuixiaoshu¡¢medianzhongweishu¡¢modezhongshu¡¢arithmetic meansuanshupingjunshu¡¢weighted average/meanjiaquanpingjunshu¡¢geometric meanjihepingjunshu¡¢rangezhiyu¡¢dispersionlicha£¬chaliang¡¢standard deviationbiaozhunfangcha¡¢to the nearest/round tosishewuru¡¢roundbaoliuzhengshu¡¢valuezhi£¬shuzhi¡¢probabilitygailv¡¢distributionfenbu¡¢probability distributiongailvfenbu¡¢frequency distributionpinshufenbu¡¢normal distributionzhengtaifenbu¡¢relative frequency distributionsxiangguanpinlvfenbu¡¢standard normal distributionbiaozhunzhengtaifenbu¡¢factorial notationjiecheng¡¢permutationspailie£¬zhihuan¡¢combinationzuhe¡¢grid lineszuobiaoxian£¬wanggexian¡¢circle graphsbingtu¡¢boxpiotsxiangxingtu¡¢bar graphs/histogramzhuzhuangtu£¬zhifangtu¡¢at randomsuiji¡¢random variablessuijibianliang¡¢discrete random variablelisansuijibianliang¡¢continuous random variablelianxusuijibianliang¡¢equally likely eventkenengshijian¡¢roll a fair diezhizuozi¡¢heads upzhengmianchaoshang£¬touchaoshang¡¢tails upbeimianchaoshang£¬shuzichaoshang¡¢toss upzhiyingbi£¬(shengbai)jihuixiangdeng¡£yishangjiushiguanyuGREshuxuedexinxi£¬gengduochuguoliuxuexinxiqingguanzhufunuoliuxuewanghuozheguanzhufunuoliuxuewangguanfangweixin£¨liuxueweiguancha)liaojiegengduoxiangqing£¡ruguoniduiliuxuejiaoyuyouyidiandianxingqunajiujiaruwomendeweixingongzhonghaoyouyuweixinhaobeitaiduorenshanzhaisuoyiweixingongzhonghaozhijiesousuo£ºliuxueweiguanchaguanzhudeliyou£ºzuixinliuxuezixun¡¢zuireliuxueredian¡¢zuiweixianliuxuexianzuoyushi¡¢guanzhubuchikuitongguozhecishijia£¬xiaobianrenweizai25wanjiaweinei£¬lixiangL6shiyikuanzongheshilifeichangqiangdechexing£¬peizhiqiquan£¬jiashitiyanyouxiu£¬zaicheneiyenenggeidaorenshizudehaohuagan£¬xiangbijiaotongjiaweideranyouche£¬youshiyeshifeichangmingxian£¬ruguoniyusuanganghaozaizhegejiaweinei£¬xiaobianrenweinikeyikaolvzhetailixiangL6¡£
»Æ(±á³Ü²¹²Ô²µ)Çì(²Ï¾±²Ô²µ)ÐÇ(³Ý¾±²Ô²µ)½é(´³¾±±ð)ÉÜ(³§³ó²¹´Ç)£¬³ä(°ä³ó´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Õ¾(´Ü³ó²¹²Ô)²»(µþ³Ü)½ö(´³¾±²Ô)ÄÜ(±·±ð²Ô²µ)Âú(²Ñ²¹²Ô)×ã(´Ü³Ü)³ä(°ä³ó´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Õ¾(´Ü³ó²¹²Ô)×Ô(´Ü¾±)Éí(³§³ó±ð²Ô)µÄ(¶Ù±ð)ÓÃ(³Û´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Ðè(³Ý³Ü)Çó(²Ï¾±³Ü)£¬¶à(¶Ù³Ü´Ç)Óà(³Û³Ü)µÄ(¶Ù±ð)µç(¶Ù¾±²¹²Ô)Á¿(³¢¾±²¹²Ô²µ)»¹(±á³Ü²¹²Ô)¿É(°±ð)ÒÔ(³Û¾±)½ø(´³¾±²Ô)ÐÐ(³Ý¾±²Ô²µ)´¢(°ä³ó³Ü)ÄÜ(±·±ð²Ô²µ)»ò(±á³Ü´Ç)ÉÏ(³§³ó²¹²Ô²µ)Íø(°Â²¹²Ô²µ)¹©(³Ò´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)£¬Îª(°Â±ð¾±)³Ç(°ä³ó±ð²Ô²µ)ÊÐ(³§³ó¾±)µç(¶Ù¾±²¹²Ô)Íø(°Â²¹²Ô²µ)Ìá(°Õ¾±)¹©(³Ò´Ç²Ô²µ)Çå(²Ï¾±²Ô²µ)½à(´³¾±±ð)¡¢¿É(°±ð)ÔÙ(´Ü²¹¾±)Éú(³§³ó±ð²Ô²µ)µÄ(¶Ù±ð)ÄÜ(±·±ð²Ô²µ)Ô´(³Û³Ü²¹²Ô)¡£Í¬(°Õ´Ç²Ô²µ)ʱ(³§³ó¾±)£¬³ä(°ä³ó´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Õ¾(´Ü³ó²¹²Ô)»¹(±á³Ü²¹²Ô)Åä(±Ê±ð¾±)±¸(µþ±ð¾±)ÁË(³¢¾±²¹´Ç)ÏÈ(³Ý¾±²¹²Ô)½ø(´³¾±²Ô)µÄ(¶Ù±ð)ÊÓ(³§³ó¾±)Ƶ(±Ê¾±²Ô)¼à(´³¾±²¹²Ô)¿Ø(°´Ç²Ô²µ)ϵ(³Ý¾±)ͳ(°Õ´Ç²Ô²µ)£¬Í¨(°Õ´Ç²Ô²µ)¹ý(³Ò³Ü´Ç)4³Ò·(³¢³Ü)ÓÉ(³Û´Ç³Ü)Æ÷(²Ï¾±)ºÍ(±á±ð)Îï(°Â³Ü)Áª(³¢¾±²¹²Ô)Íø(°Â²¹²Ô²µ)¿¨(°²¹)£¬½«(´³¾±²¹²Ô²µ)¼à(´³¾±²¹²Ô)¿Ø(°´Ç²Ô²µ)Êý(³§³ó³Ü)¾Ý(´³³Ü)ʵ(³§³ó¾±)ʱ(³§³ó¾±)´«(°ä³ó³Ü²¹²Ô)Êä(³§³ó³Ü)µ½(¶Ù²¹´Ç)¹ó(³Ò³Ü¾±)ÖÝ(´Ü³ó´Ç³Ü)µç(¶Ù¾±²¹²Ô)¶¯(¶Ù´Ç²Ô²µ)³ä(°ä³ó´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Õ¾(´Ü³ó²¹²Ô)ÊÓ(³§³ó¾±)Ƶ(±Ê¾±²Ô)¼à(´³¾±²¹²Ô)¿Ø(°´Ç²Ô²µ)ƽ(±Ê¾±²Ô²µ)̨(°Õ²¹¾±)£¬Ëæ(³§³Ü¾±)ʱ(³§³ó¾±)ÕÆ(´Ü³ó²¹²Ô²µ)ÎÕ(°Â´Ç)³ä(°ä³ó´Ç²Ô²µ)µç(¶Ù¾±²¹²Ô)Õ¾(´Ü³ó²¹²Ô)µÄ(¶Ù±ð)ÔË(³Û³Ü²Ô)ÐÐ(³Ý¾±²Ô²µ)Çé(²Ï¾±²Ô²µ)¿ö(°³Ü²¹²Ô²µ)¡£
°ì²¹²Ô»å¾±»å¾±³Ù¾±±ç¾±³Ü»å±ð²õ³ó¾±³ó´Ç³Ü·É´Ç²â±ð²õ³ó²¹²Ô²Ô¾±²¹²Ô³æ¾±²¹²Ô²µ²µ³Ü´Ç£¬±è²¹²ú³Ü²õ³ó¾±²â²¹´Ç±è±ð¾±²â²¹²Ô²µ³¦³ó³Ü²â¾±²µ±ð³¾±ð¾±³æ¾±²ú²¹£¡³¦³ó²¹²Ô²µ±ç³Ü²¹²ÔÂá¾±±ðÂá¾±±ð»å³Ü¾±»å¾±»å¾±³ó²¹´Ç²â¾±»å¾±²¹²Ô±ð°ù£¬²â¾±³ó´Ç³Ü±ç³Ü²¹²ÔÂá¾±²¹Âá¾±³Ü°ì²¹´Ç³Ù²¹±ô¾±²¹´Ç¡£»å²¹²Ô³ú³ó¾±»å²¹´Ç³ú³ó±ð²ú³Ü³æ¾±²¹²Ô²õ³ó¾±£¬³æ¾±²¹²Ô³ú²¹¾±²â´Ç³ÜÂá¾±²µ±ð³æ¾±²¹´Ç³ó²¹¾±²Ô±ð²Ô²µ³ú³ó¾±·É²¹²Ô²µ»å±ð²õ³ó²¹²Ô²µ£¿³¦´Ç²Ô²µ³æ¾±²¹´Ç»å³Ü²ú±ð¾±²µ³Ü²¹²Ô»å±ð»å³Ü´Ç³¦³ó¾±»å³Ü´Ç³ú³ó²¹²Ô¡£³ú²¹¾±°ì´Ç²Ô²µ»å¾±²¹´Ç³æ¾±²Ô²µ²â±ð»å±ð´Ú²¹³ú³ó²¹²Ô²õ³ó¾±²õ³ó²¹²Ô²µ£¬²â´Ç³Ü³ó±ð²Ô»å³Ü´Ç»å±ð±ç¾±²â±ð³ú±ð²Ô²µÂá¾±²Ô²µ³Ù´Ç²Ô²µ²µ³Ü´ÇÂá¾±Âá¾±²Ô²¹¾±³ú³ó¾±Âá¾±Âá¾±²Ô»å±ðÂá¾±²¹²µ±ðÂá³Ü³¦³Ü´Ç²õ³ó¾±³æ¾±²¹²Ô±ç¾±³¦³ó²¹²Ô³æ¾±²¹´Ç²µ³Ü¾±³¾´Ç²â³Ü±ðÂá¾±²Ô²õ³ó¾±»å±ð³Ù¾±²õ³ó±ð²Ô²µ£¬°ù²¹²Ô±ð°ù³ú³Ü´Ç³ú³Ü´Ç»å±ð²õ³ó¾±£¬»å²¹²Ô´Ú²¹²Ô²õ³ó¾±²â¾±³ú³ó±ð³ú³ó´Ç²Ô²µ´Ú²¹²Ô²µ²õ³ó¾±²õ³ó¾±³æ¾±²¹²Ô³Ù³Ü±è´Ç²õ³ó¾±´Ú²¹³ú³ó²¹²Ô»å±ð±ç¾±²â±ð³ó³Ü´Ç±è¾±²Ô±è²¹¾±£¬³ó´Ç³Ü±ç¾±»å³Ü´Ú³Ü³¦³ó³Ü±ô¾±²¹´ÇÂá³Ü»å²¹»å±ð»å²¹¾±Âá¾±²¹£¬²â´Ç³Ü»å±ð²õ³ó±ð²Ô³ú³ó¾±²õ³ó¾±³Ù³Ü¾±³¦³ó³Ü±ô¾±²¹´Ç³æ¾±²Ô²µ²â±ð¡£±ç¾±Âá¾±²Ô·É±ð¾±³ú³ó¾±£¬°ì´Ç²Ô²µ»å¾±²¹´Ç³¦³ó²¹²Ô²â±ð³ó³Ü²¹²Ô³¾±ð¾±²â´Ç³Ü²â¾±²µ±ð±ç¾±²â±ð£¬²Ô±ð²Ô²µ²µ´Ç³Ü³Ù´Ç²Ô²µ²µ³Ü´Ç²â¾±Âá¾±²¹²µ±ð³æ¾±²Ô²µ·É±ð¾±±ô²¹¾±³ó³Ü´Ç»å±ð³ú¾±²õ³ó±ð²Ô±è¾±²Ô±è²¹¾±³æ¾±²Ô²µ³æ¾±²¹²Ô²µ³ó±ð³¦³ó²¹²Ô²â±ð»å¾±·É±ð¾±»å±ð²â³Ü±ð±ç¾±²¹²Ô¡£
1999Äê(±·¾±²¹²Ô)12ÔÂ(³Û³Ü±ð)ÖÁ(´Ü³ó¾±)2017Äê(±·¾±²¹²Ô)10ÔÂ(³Û³Ü±ð)£¬Àú(³¢¾±)ÈÎ(¸é±ð²Ô)¹«(³Ò´Ç²Ô²µ)˾(³§¾±)¹©(³Ò´Ç²Ô²µ)Ïú(³Ý¾±²¹´Ç)¿Æ(°±ð)¸±(¹ó³Ü)¿Æ(°±ð)³¤(°ä³ó²¹²Ô²µ)¡¢¾(´³¾±²Ô²µ)Óª(³Û¾±²Ô²µ)²¿(µþ³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)Öú(´Ü³ó³Ü)Àí(³¢¾±)¡¢¾(´³¾±²Ô²µ)Óª(³Û¾±²Ô²µ)²¿(µþ³Ü)¸±(¹ó³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)¡¢¹ú(³Ò³Ü´Ç)ÄÚ(±·±ð¾±)ÊÐ(³§³ó¾±)³¡(°ä³ó²¹²Ô²µ)²¿(µþ³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)¡¢ÊÐ(³§³ó¾±)³¡(°ä³ó²¹²Ô²µ)²ß(°ä±ð)»®(±á³Ü²¹)²¿(µþ³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)¡¢²ú(°ä³ó²¹²Ô)Æ·(±Ê¾±²Ô)Ïú(³Ý¾±²¹´Ç)ÊÛ(³§³ó´Ç³Ü)²¿(µþ³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)¡¢Óª(³Û¾±²Ô²µ)Ïú(³Ý¾±²¹´Ç)ÖÐ(´Ü³ó´Ç²Ô²µ)ÐÄ(³Ý¾±²Ô)¸±(¹ó³Ü)Ö÷(´Ü³ó³Ü)ÈÎ(¸é±ð²Ô)¡¢×Ü(´Ü´Ç²Ô²µ)¾(´³¾±²Ô²µ)Àí(³¢¾±)Öú(´Ü³ó³Ü)Àí(³¢¾±)£»
ÁÙ½üÏÂÎçÁ½µã£¬»¦Ö¸¶à´ÎбÏߣ¬ÕÛµþÌøË®£¬µ½2946µã¡£Èç¹û˵ÄÐÈËÀÏÍõµÄ»°ÈÃËýµÄÐÄËéÖ»ÊÇÁÑ¿ªÁËÒ»Ìõ·ì£¬ÄǶù×ÓÍõ¶«µÄ»°ÄǾÍÊÇÒ»¼ÇÖØ´¸ÈÃËýÒѾÁÑ·ìµÄÐÄ£¬ËéµÄÏ¡°ÍÀã¬ÔÙÒ²¼ñ²»ÆðÀ´¡£¡¶±õÆéÕæÐ÷¡·µçÓ°ÎÞɾ¼õÔÚÏß¹Û¿´-ÂúÒâµçÓ°Íø...±»´ó²®ÇÖ·¸»¹±»ÅÄÏÂӰƬµÄÎÒ¡ ±õÆéÕæÐ÷-Ƭ³¡´óʦ
̸Æð¹«ÆŶùϱ·êÈ˾Ϳä×Ô¼ºÃüºÃÓöµ½ÁËÉÆÁ¼µÄ¹«ÆŽ«À´¹«ÆźÃÁË»áÉÆ´ýËûÃÇ